සියලු ම හිමිකම් ඇව්රිණි / (மුඟුට පුණිට්)ආගංගුනෙදානු / All Rights Reserved

අධානයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

රසායන විදනාව II இரசாயனவியல் II Chemistry II

පැය තුනයි மூன்று மணித்தியாலம் Three hours

1.151

Index No.:

- * A Periodic Table is provided on page 15.
- * Use of calculators is not allowed.
- * Universal gas constant, R = 8.314 J K⁻¹ mol⁻¹
- * Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
- * In answering this paper, you may represent alkyl groups in a condensed manner.

□ PART A — Structured Essay (pages 2 - 8)

- * Answer all the questions on the question paper itself.
- * Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected.

□ PART B and PART C - Essay (pages 9 - 14)

- * Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
- * At the end of the time allotted for this paper, tie the answers to the three Parts A, B and C together so that Part A is on top and hand them over to the Supervisor.
- * You are permitted to remove only Parts B and C of the question paper from the Examination Hall.

For Examiner's Use Only

Part	Question No.	Marks
	1	
A	. 2	
	3	*
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
Total		
Percentag	ge	i ii

Final Mark

In Numbers	
In Letters	THE STREET ST

Code Numbers

Marking Examiner 1	
Marking Examiner 2	
Checked by :	tori (Fillia)
Supervised by :	reg April 20

6.	A 0.60 g sample of KIO_3 was dissolved in water and excess KI was added to it. The minimum amount of 3.0 mol dm ⁻³ HCl required to completely convert KIO_3 to I_3^- is, $(O = 16, K = 39, I = 127)$
	(1) 1.0 cm^3 (2) 4.7 cm^3 (3) 5.6 cm^3 (4) 10.2 cm^3 (5) 33.6 cm^3
7.	At 25 °C, the solubility product, $K_{\rm sp}$ of MnS(s) is 5.0×10^{-15} mol ² dm ⁻⁶ . The acid dissociation constants K_1 and K_2 for H_2 S(aq) are 1.0×10^{-7} mol dm ⁻³ and 1.0×10^{-13} mol dm ⁻³ respectively. The equilibrium constant, K_c for the reaction, MnS(s) + $2H^+$ (aq) \rightleftharpoons Mn ²⁺ (aq) + H_2 S(aq) is
	(1) 2.0×10^{-16} (2) 5.0×10^{-8} (3) 20 (4) 5.0×10^{5} (5) 2.0×10^{7}
8.	An organic compound A contains 39.97% of C, 6.73% of H and 53.30% of O, by weight. What is the empirical formula of A? (H = 1, C = 12, O = 16) (1) $C_0H_0O_3$ (2) $C_2H_4O_2$ (3) $C_3H_7O_3$ (4) $C_3H_6O_3$ (5) CH_2O_3
	0 8 2
9.	Which of the following statements is false with regard to the chemistry of Lithium (Li) and its compounds? (1) Lithium reacts with oxygen gas to give Li ₂ O. (2) Lithium has the highest melting point among the group I metals.
	 (3) The basicity of LiOH is less than that of NaOH. (4) Li₂CO₃ has the lowest thermal stability among the group I carbonates. (5) LiCl gives a blue colour when subjected to the flame test.
10.	The oxidation states of N^{\oplus} and N^{\oplus} in the most stable Lewis structure of the F_2NNO molecule respectively
	are (skeleton, $F = N^{\oplus} = N^{\oplus} = 0$)
	(1) +2 and +2 (2) +1 and +3 (3) +2 and +3 (4) +1 and +2 (5) +3 and +1
11.	Consider the reaction, $CH_4(g) + CO_2(g) \rightleftharpoons 2CO(g) + 2H_2(g)$. When 0.60 mol of $CH_4(g)$ and 1.00 mol of $CO_2(g)$ were introduced into a closed rigid container of volume 1.00 dm ³ at 25 °C and the system was allowed to reach equilibrium, 0.40 mol of $CO(g)$ was formed. The value of the equilibrium constant, K_c (mol ² dm ⁻⁶) for the reaction is (1) 0.04 (2) 0.08 (3) 0.67 (4) 1.20 (5) 8.00
	(1) 0.04 (2) 0.00
12.	The chemical formula of diamminebromidodicarbonylhydridocobalt(III) chloride according to IUPAC rules is (1) [Co(CO) ₂ BrH(NH ₃) ₂]Cl (2) [CoBr(CO) ₂ (NH ₃) ₂ H]Cl (3) [Co(NH ₃) ₂ Br(CO) ₂ H]Cl (4) [CoBr(CO) ₂ H(NH ₃) ₂]Cl (5) [CoHBr(CO) ₂ (NH ₃) ₂]Cl
	The following procedure was used to determine the sulphur content in a coal sample. A coal sample of mass 1.60 g was burned in oxygen gas. The SO_2 gas formed was collected in a solution of H_2O_2 . This solution was then titrated with 0.10 mol dm ⁻³ NaOH. The volume of NaOH required to reach the end point was 20.0 cm ³ . The percentage of sulphur in the coal sample is $(S = 32)$ (1) 1.0 (2) 2.0 (3) 4.0 (4) 6.0 (5) 8.0
14.	Combustion of ethylene, C ₂ H ₄ (g) is shown in the following reaction.
	$C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(g)$ $\Delta H = -1323 \text{ kJ mol}^{-1}$
	What is the value of ΔH (in kJ mol ⁻¹) if the combustion produces water in the liquid state, $H_2O(l)$ rather than water in the gaseous state, $H_2O(g)$? (ΔH for $H_2O(g) \longrightarrow H_2O(l)$ is - 44 kJ mol ⁻¹)
	(1) -1235 (2) -1279 (3) -1323 (4) -1367 (5) -1411
15	The vapour pressure of benzene at 25 °C is 12.5 kPa. When an unknown non-volatile substance was dissolved in 100 cm ³ of benzene at this temperature, the vapour pressure of the solution was found to be 11.25 kPa. The mole fraction of the unknown substance in the above solution is
	(1) 0.05 (2) 0.10 (3) 0.50 (4) 0.90 (5) 0.95

16.	A buffer solution can base. The ratio of the pH = 6 is	be prepared by concentrations of	mixing a weak acid of acid to base (acid:	$(K_a = 4.0 \times 10^{\circ})$ base) needed to)-7 mol dm ⁻³) and a prepare a buffer solut	strong ion at
	(1) 1:1	(2) 2 : 1	(3) 2 · 5	(4) 5 . 1	(5) 5 . 2	

17.

The major product A obtained from the reaction given above is

- 18. The rate law for the reaction $NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$ is, Rate = $k[NO_2]^2$. If a small amount of CO(g) is introduced to a closed rigid container in which this reaction is taking place at a given temperature, which of the following statements is true regarding the changes that would take place?
 - (1) Both k and reaction rate increase.
 - (2) Both k and reaction rate remain unchanged.
 - (3) Both k and reaction rate decrease.
 - (4) k increases and reaction rate remains unchanged.
 - (5) k remains unchanged and reaction rate increases.
- 19. At 25 °C, given that.

$$M(s) + 3Ag^{+}(aq) \longrightarrow 3Ag(s) + M^{3+}(aq)$$
 $E_{cell}^{\circ} = 2.46 \text{ V}$
 $Ag^{+}(aq) + e \longrightarrow Ag(s)$ $E^{\circ} = 0.80 \text{ V}$

The standard reduction potential for the half-reaction, $M^{3+}(aq) + 3e \longrightarrow M(s)$ at 25 °C is

- (1) -1.66 V
- (2) -0.06 V
- (3) 0.06 V
- (4) 1.66 V
- (5) 3.26 V
- 20. How many resonance structures can be drawn for the molecule N_2O_3 ? (skeleton, O-N-(1) 2 (3) 4
- 21. Which of the following statements is true with regard to transition metals and their compounds?
 - (1) The electronic configuration of copper is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$.
 - (2) All elements that have d-electrons are 'transition elements'.
 - (3) The electronic configuration of Ti in TiO2 is the same as that of Sc in ScCl3.
 - (4) Acidity of the oxides of a given transition metal decreases with increase in oxidation state of the
 - (5) Transition metals in the 3d series can have the quantum number $m_l = \pm 3$.

22. The equilibrium PCl₃(g) + 3NH₃(g)

⇒ P(NH₂)₃(g) + 3HCl(g) exists in a closed container at a constant temperature. If the volume of the container is increased by keeping the temperature constant, which of the following is true regarding the changes that could take place in the rates of forward and reverse reactions?

	roi waru reaction	Reverse reaction
(1)	increases	decreases
(2)	decreases	increases
(3)	decreases	decreases
(4)	increases	increases
(5)	no change	no change

23. When solid ammonium chloride, NH₄Cl(s) is dissolved in water at 25 °C, the temperature of the solution decreases. Which of the following is true of ΔH° and ΔS° for the process?

positive
negative
zero
nositive
negative

24. Which of the following statements is false regarding 3d transition metals and their compounds?

(1) Oxides of some metals are amphoteric.

- (2) Some metals and metal oxides are used in industry as catalysts.
- (3) Electronegativity of 3d transition metals is higher than 4s metals.
- (4) Only one element shows the oxidation state of +7.
- (5) Oxoions such as MnO₄, Cr₂O₇²⁻ are resistant to reduction.

The major product obtained, when the compound above is reacted with excess CH₃MgBr, and then hydrolyzed is

(2)
$$CH_3 - C - CH_2 - C - CH_3$$

26.
$$CH_3COCH_2CONH_2 \xrightarrow{(1) LiAiH_4} X \xrightarrow{CH_3COCH_3} Y$$

In the reaction scheme given above, the structures of X and Y respectively are

- (4) CH₃COCH₂CH₂NH₂, CH₃COCH₂CH₂NHCOCH₃
- (5) CH₃CHCH₂CH₂NH₂, CH₃CHCH₂CH₂NHCOCH₃ OH OH

- 27. Which of the following statements is false with regard to NH₃?
 - (1) NH₃ can act only as a base.
 - (2) NH₃ burns in oxygen to give N₂ gas.
 - (3) NH₃ gives a brown colour with Nessler's reagent.
 - (4) NH3 reacts with Li to give Li3N and H2 gas.
 - (5) NH₃ has a bond angle less than 109° 28' but greater than that in NF₃.
- 28. An electrochemical cell was constructed using Zn²⁺(aq)/Zn(s) and Sn²⁺(aq)/Sn(s) electrodes. Which of the following statements correctly describes the operation of the cell?

$$E_{\text{Zn}^{2+}(\text{aq})/\text{Zn}(\text{s})}^{\circ} = -0.76 \,\text{V}, \qquad E_{\text{Sn}^{2+}(\text{aq})/\text{Sn}(\text{s})}^{\circ} = -0.14 \,\text{V}$$

- (1) Zn electrode is the cathode, Zn is oxidized, electrons flow from Sn to Zn.
- (2) Zn electrode is the cathode, Sn is oxidized, electrons flow from Sn to Zn.
- (3) Sn electrode is the anode, Zn²⁺(aq) is reduced, electrons flow from Zn to Sn.
- (4) Zn electrode is the anode, Zn is oxidized, electrons flow from Zn to Sn.
- (5) Zn electrode is the anode, Sn2+(aq) is reduced, electrons flow from Sn to Zn.
- 29. Which one of the following statements about C₆H₅NH₂ is false?
 - (1) Reacts with CH3COCI to form an amide.
 - (2) Evolves ammonia when heated with aqueous NaOH.
 - (3) Reacts with bromine water to give a white precipitate.
 - (4) Gives a phenol when reacted with nitrous acid.
 - (5) Less basic than C₆H₅CH₂NH₂.
- 30. Four saturated solutions of silver acetate in contact with CH₃COOAg(s) are placed in four beakers. How does the solubility of silver acetate change, when the following solutions are added separately to each of the beakers?

CH3COONa, dil. HNO3, NH4OH, AgNO3

	CH ₃ COONa	dil. HNO ₃	NH ₄ OH	AgNO ₃
(1)	increases	increases	increases	increases
(2)	decreases	decreases	decreases	decreases
(3)	decreases	increases	increases	decreases
(4)	decreases	increases	decreases	decreases
(5)	decreases	decreases	increases	decreases

- For each of the questions 31 to 40, one or more responses out of the four responses (a), (b), (c) and (d) given is/are correct. Select the correct response/responses. In accordance with the instructions given on your answer sheet, mark
 - (1) if only (a) and (b) are correct.
 - (2) if only (b) and (c) are correct.
 - (3) if only (c) and (d) are correct.
 - (4) if only (d) and (a) are correct.
 - (5) if any other number or combination of responses is correct.

Summary of above Instructions

(1)	(2)	(3)	(4)	(5)
Only (a) and (b) are correct	Only (b) and (c) are correct	Only (c) and (d) are correct	Only (d) and (a) are correct	Any other number or combination of responses is correct

31. Consider the reaction given below.

$$2HI(g) \rightleftharpoons I_2(s) + H_2(g) \Delta H^{\circ} = -52.96 \text{ kJ mol}^{-1}$$

Which of the following statements is/are correct when the reaction takes place in a closed container?

- (a) Increasing the temperature and decreasing the pressure drives the equilibrium to the right.
- (b) Increasing the temperature and decreasing the pressure drives the equilibrium to the left.
- (c) Decreasing the temperature and increasing the pressure drives the equilibrium to the right.
- (d) Decreasing the temperature and increasing the pressure drives the equilibrium to the left.

(a) A and B

(b) A and C

-	-6-
	 32. Which of the following statements is/are true regarding the molecule CH₂=CHCHO? (a) All three carbon atoms are sp² hybridized. (b) All three carbon atoms lie in a straight line. (c) All three carbon atoms do not lie in the same plane. (d) All three carbon atoms lie in the same plane.
	33. Some of the reactions associated with the Solvay process are (a) $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$ (b) $NaCl + NH_3 + H_2O + CO_2 NaHCO_3 + NH_4Cl$ (c) $Na_2CO_3 + CO_2 + H_2O 2NaHCO_3$ (d) $Ca(OH)_2 + 2NH_4Cl CaCl_2 + 2NH_4OH$
3	 4. Which of the following statements is/are always true regarding the rate of an elementary reaction? (a) The rate can be increased by increasing temperature. (b) The rate can be increased by removing the products from the reaction medium. (c) The rate of the reaction depends on the rate of the slowest step. (d) Rate of the reaction can be increased by mediag ΔC < 0.
35	 (c) Shows geometric isomerism. (b) The compound obtained when reacted with HBr does not show optical isomerism. (c) The compound obtained when reacted with HBr shows optical isomerism. (d) The compound obtained when reacted with CH₃MgBr shows optical isomerism.
	 (a) Pure nitric acid is a light yellow liquid. (b) All N-O bond lengths in nitric acid are equal. (c) Nitric acid cannot act as a reducing agent. (d) It is used in the manufacture of an important fertilizer, ammonium nitrate.
37.	C(s) reacts with O ₂ (g) to produce 0.40 mol of CO ₂ (g), with the release of 40 kJ of heat. Which of th following statements is/are true for the above system? (C = 12, O = 16) (a) 100 kJ of heat is required to decompose one mole of CO ₂ (g) into C(s) and O ₂ (g). (b) 25 kJ of heat is required to form 11 g of CO ₂ (g). (c) Sum of enthalpies of products is less than the sum of enthalpies of reactants. (d) Sum of enthalpies of products is greater than the sum of enthalpies of reactants.
38.	Which of the following statements is/are true for a balanced chemical equation of an elementary reaction (a). The order of reaction is the same as molecularity. (b) The order of reaction is less than the molecularity. (c) The order of reaction is higher than the molecularity. (d) Molecularity cannot be zero.
39.	Which of the following statements is/are true regarding the molecule given below? CH ₂ =CH(CH ₂) ₃ —C—NH ₂
	 (a) Decolourizes bromine water. (b) Liberates ammonia when warmed with an aqueous NaOH solution. (c) Gives an orange coloured precipitate with 2,4-DNP reagent. (d) Gives a primary amine when treated with NaBH₄.
	Consider the compounds given below. (A) HCHO (B) NH ₂ CONH ₂ (C) C.H.OH
	(D) HO ₂ C(CH ₂) ₄ CO ₂ H (E) H ₂ N(CH ₂) ₆ NH ₂ (C) C ₆ H ₅ OH Which of the pairs given below will produce thermosetting polymers when reacted under the appropriate conditions?

(c) C and D

(d) D and E

• In question Nos. 41 to 50, two statements are given in respect of each question. From the Table given below, select the response out of the responses (1), (2), (3), (4) and (5) that hest fits the two statements and mark appropriately on your answer sheet.

Response	First Statement	Second Statement
(1) (2) (3) (4) (5)	True True True False False	True, and correctly explains the first statement. True, but does not explain the first statement correctly False True False

	First Statement	Second Statement
41.	Sucrose when treated with concentrated H ₂ SO ₄ gives a black mass.	Concentrated H ₂ SO ₄ is a strong oxidizing agent.
4 2.	HX, the CH ₃ CH ₂ CH ₂ carbocation is formed easily as an intermediate.	Alkyl groups attached to a positively charged carbon atom release electrons through C—C, σ-bonds towards the positively charged carbon and increase the stability of the carbocation.
43.	The average molecular speed of $H_2(g)$ at 80 °C is lower than that of $N_2(g)$ at 40 °C.	Average molecular speed is directly proportional to the square root of temperature and inversely proportional to the square root of molar mass.
14.	Reactivity of alkali metals with water increases on going down the group.	Strong metallic bonds are formed when the size of the metal atom increases.
15.	$CH_3C\equiv CH$ gives a red precipitate when treated with ammoniacal Cu_2Cl_2 .	The acidic terminal hydrogen in alkynes can be displaced by metals.
16.	All spontaneous reactions are exothermic.	For any reaction $\Delta G = \Delta H + T\Delta S$
17.	The reaction between $N_2(g)$ and $H_2(g)$ to produce $NH_3(g)$ is endothermic.	NH ₃ (g) is used in the synthesis of nitric acid and urea.
8.	Mirror images of bromochloromethane are enantiomers.	Enantiomers are non superimposable mirror images of each other.
9.	The solubility of barium oxalate, BaC ₂ O ₄ (s) is less in acidic aqueous medium than in water.	The conjugate acid of $C_2O_4^{2-}$ is the weak acid $H_2C_2O_4$.
0.	Enzymes present in root nodules of certain plants are capable of fixing N_2 .	N ₂ molecule is unreactive mainly because of the presence of the N-N triple bond.

The Periodic Table

	1													P35:				2
	H																	He
I	3	4											5	6	7	8	9	10
L	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
	Na	Mg											Al	Si	P	S	CI	Aı
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	-55-	-55.	I 2-	-72-	- 73	74	75	76	-77	78	79	-80	81	-820	-83-	8.4	35-	86
L	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
ľ	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

	58													
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

ගියලු ම හිමිකම් ඇවිරිණි / (ආගුරා පුනිරාජු) කාර්යාම් කාර්යාම් අවිරිණි / (ආගුරා පුනිරාජු) කාර්යාම් අවිරිණි / (ආගුරා පුනිරාජු) කාර්යාම් අවිරිණි / (ආගුරා පුනිරාජු)

අධනයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

රසායන විදාහාව II இரசாயனவியல் II Chemistry II

පැය තුනයි மூன்று மணித்தியாலம் Three hours

Index No.:

- * A Periodic Table is provided on page 15.
- * Use of calculators is not allowed.
- * Universal gas constant, R = 8.314 J K⁻¹ mol⁻¹
- * Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
- * In answering this paper, you may represent alkyl groups in a condensed manner.

□ PART A - Structured Essay (pages 2 - 8)

- * Answer all the questions on the question paper itself.
- * Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected.

□ PART B and PART C - Essay (pages 9 - 14)

- * Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
- * At the end of the time allotted for this paper, tie the answers to the three Parts A, B and C together so that Part A is on top and hand them over to the Supervisor.
- * You are permitted to remove only Parts B and C of the question paper from the Examination Hall.

For Examiner's Use Only

Part	Question No.	Marks		
	1			
A	2			
	3			
	4			
	5			
В	6			
19	7			
	8			
C	9			
	10			
Total				
Percentag	ge			

Final Mark

In Numbers	
In Letters	TO THE STATE OF TH

Code Numbers

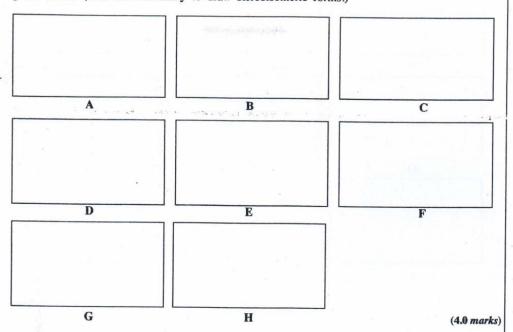
Marking Examiner 1	
Marking Examiner 2	
Checked by :	10 - 21 EV
Supervised by:	On inviscolo 31

of hig	B Al		list of				ries 10 marks.)	in th
From the li	В		list of	some p-b	lock elem	ents in the	Periodic Table.	colu
(i) identif	Al	C	N	o s	F	Ne Ar		
(i) identif	-	Si	P	3	Ci			
	y the non-me h hardness.							
	y the elemen						s	
(iii) identif	fy the element	that has the h	nighest fi	irst ionizat	ion energy			
	fy the elemen							
THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS.	fy the elemen	The second secon				time to principle to a principle.		**************************************
						xidizing age	ent	
(vi) identi	fy the elemen	t that is cons	sidered t	o oc uic s	i ongosi o	8 -8	(2.4	marks)
	765361	5 90 access	and c	the mol	ecule CN	. It has the	following skeletor	1.
(b) The follow	ving parts (i)	to (v) are t	pased of	N N	N	. It may an	e following skeletor	
	0.000		N—C	o approvi	mately en	ual draw t	he most acceptable	Lewis
struct	ture for this	molecule.						7
								1 al - 1 =
								1971
							our drawn in part (i)	above).
(ii) Drav	v three resona	ance structure	s for thi	s molecul	e (excludii	ig the struct	ture drawn in part (i)	
4.								
7								
aton I. III.	ns given in t VSEPR pair shape aroun	the table belows around the difference of the atom.	atom.		II. elec IV. hyb	ctron pair g	geometry around the of the atom.	
The	nitrogen ato	ms of CN ₄	NI—C	N2-N	-N ⁴			_
			1	С		N ²	. N ³	
I.	VSEPR pair	rs						
	electron pai							
	shape							
111	hybridizatio		-					

/20	16/02	2-E-II(A)			- 3 -	Index	No.:	
		In the Lew electronegati	ivity. Give re	easons for you	ur choice. [Nu	imbering of a	her N ² or N ³ has	t (iii).]
							7%	
				1973	20 Sept.			
	(v)	Identify the Lewis struct	atomic/hybri	d orbitals inv n part (i) abo	volved in the	formation of	the following σ s as in part (iii).]	bonds in the
		I. N [⊥]						14
		II. C—N	2 C		,	N ²		
	3.00	III. N ² —N	N ³ N ²		,	N ³		
e - 60		TV N3_N	₁4 . N₁3 .		······································	N ⁴	y their divine a state of their sections of the section of the sec	
(a)	State	1 4 4						(5.6 marks)
(c)						(Reasons are	e not required.)	
		Although the	e electron pa	table molecule air geometry gles are differ	of SiCl ₄ , NCI	and SCl ₂ i		/
	(iii)				an that of Xe.			
		The solubili	ty of group	II sulphates	decreases do n enthalpy of	wn the group		
	The of bagases	hydroxide of	X is more e hydroxide for global w	basic than that of Y is comm	at of Y. The	hydroxide of	ith water to form X is used in the gas Z that is one	manufacture
	(1)	identify A a			**	_		-
			X		Y	17		
	(ii)	Write the ele	ectronic conf	igurations of	X and V			
	, ,	X =			ar und r.			
		Y =	=					
	(iii)		lour of the f		y salts of X		flame test	
		X =				Y =	name test.	See The
	(iv)				following in		and V	
	(11)	I. Atomic		rades of the	, lonowing in	respect of A	and 1.	
		II. Density	5120	Ĺ				. 97
			noint .	Ļ	_ ^ _			
		III. Melting	-	ŗ	_ ^ _			
		IV. First ion Identify Z.	ization energ	, L	>			
	(1)	dentity Z.						
			••••••					

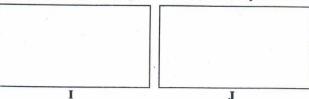
(vi) Using balanced chemical equations only, in identify Z.	dicate how the hydroxide of Y could be used to write
Note: Indicate precipitates, if any, using "\" identification.	" and colours of precipitates/solutions used in the
(vii) A natural source of Y in which it is present manufacture of a disinfectant.	t as a carbonate is used as a raw material in the
I. Name the natural source	
II. Identify the disinfectant.	
equations only.	ocess of the disinfectant, using balanced chemical

	(5.0 marks)
and writing in the box.	eting the appropriate solution from the given list
List of solutions (not in order)	
	q), (NH ₄) ₂ CO ₃ (aq), BaCl ₂ (aq), KI(aq)
Note: A solution should be used only once.	
I. BaCl ₂ (aq) +	A (White precipitate that dissolves in dil. HCl to give a clear solution)
II. Pb(NO ₃) ₂ (aq) +	B (Yellow precipitate that dissolves in hot water)
III. AgNO ₃ (aq) +	C (White precipitate that turns black on standing)
IV. K ₂ SO ₃ (aq) +	D (White precipitate that dissolves in dil. HCl)
V. NaBr(aq) +	E (Pale yellow precipitate that dissolves completely in conc. ammonia)
VI. Ba(NO ₃) ₂ (aq) +	(White precipitate that does not dissolve in dil. HCl)
(ii) Write the chemical formulae of the precipitates	s A to F.
A	В
c	
Е	
(iii) Write balanced chemical equations for the dissol	ution of precipitates A, D and E in (b)(i) above.
	1 1 1 2 11 (0)(1) 20010.
	(5.0 marks)


_	THE REST OF STATE OF THE STATE	$\overline{}$
3. (a) W	hen 0.010 moles of gas A is placed in a 1.0 dm ³ evacuated closed rigid container in the presence	Do r
of	a small amount of a solid catalyst, at 227 °C, it decomposes as shown below.	in th
	$A(g) \longrightarrow B(g) + C(g)$	colu
Th	e concentration of A(g) was measured over time. The results are shown in the following graph.	

	[A]/moi dm ⁻³	1
	0.010	1
	0.008	
	0.006	
	0.000	
	0.004	
9 5 5		
	0.002	
	500 1000 1500 2000 time/s	
= 0) Taking the order and the rate constant of the reaction as a and k , respectively, write the rate expression for the above reaction.	
(ii) Giving reasons, determine the value of a.	
(iii	Calculate the rate constant, k at 227 °C.	
(iv)	Calculate the pressure in the container when half the initial amount of $A(g)$ has decomposed. Assume that the volume of the catalyst can be neglected.	

(6.0 marks)


) In equ	the presence of a solid catalyst, the gas X decomposes according to the following chemical	1
	$X(g) \xrightarrow{Catalyst} 2Y(g) + Z(g)$	ir
1.0	$\Delta = 2 \mathbf{I}(g) + \mathbf{Z}(g)$	co
to 3	mole of gas X was introduced to an evacuated container. The initial volume of the gas was asured to be V_0 . The reaction was initiated by introducing a small amount of catalyst (volume is K is K in the initial rate of the reaction was measured as K and order of the reaction with respect that a constant value by allowing the container to expand. The temperature of the system was also maintained at a constant value.	
(1)	Write an expression for \mathbf{R}_0 using the terms \mathbf{b} , \mathbf{k}_1 and \mathbf{V}_0 .	
•		
/iii	71	
(11)	It was observed that the rate of the reaction was $0.25\mathbf{R}_0$ and the volume of the container was doubled when 50% of $\mathbf{X}(\mathbf{g})$ was consumed. Calculate the order \mathbf{b} of the reaction.	0.00
**	10	00
		00
	(4.0 marks)	
		1
		1

Do not write in this column.

(a) (i) A, B, C and D are structural isomers with the molecular formula C₄H₁₀O. All four isomers reacted with metallic sodium to evolve H₂ gas. Of the four isomers, only A exhibited optical isomerism. When B, C and D were added separately to conc. HCl, containing ZnCl₂, the mixture containing B became turbid very rapidly. The development of turbidity with C and D was very slow. When C and D were heated with conc. H₂SO₄, E and F were respectively obtained. E and F are structural isomers with the molecular formula C₄H₈. Neither E nor F exhibited geometric isomerism. When E and F were treated with HBr, G and H were respectively obtained. Only G exhibited optical isomerism. Draw the structures of A, B, C, D, E, F, G and H in the boxes given below. (It is **not necessary** to draw stereoisomeric forms.)

(ii) When A and C were reacted with PCC, I and J were respectively obtained. Draw the structures of I and J in the boxes given below. (PCC = Pyridinium chlorochromate)

(1.0 mark)

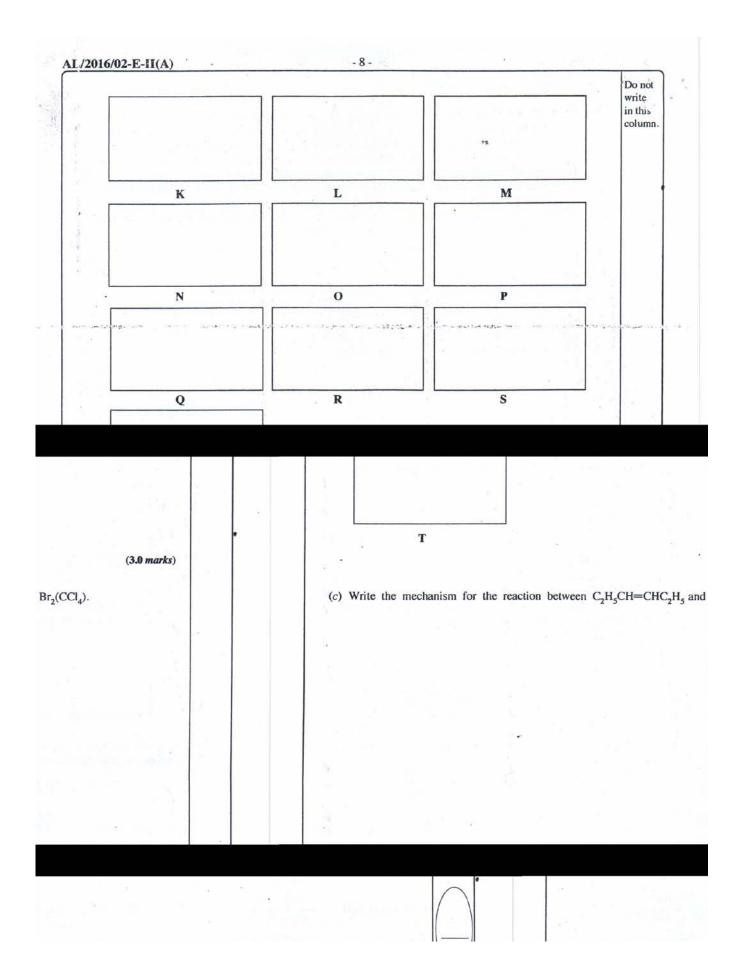
(b) Draw the structure of the major organic products K, L, M, N, O, P, Q, R, S and T of the following reactions in the relevant boxes given on page 8.

(i)
$$CH_3CH=CH_2 \xrightarrow{Peroxide} K$$

(ii)
$$C_6H_5CHO$$
 $\xrightarrow{\text{@ 2, 4 - DNP}}$ L

(iii)
$$C_6H_5N_2^+Cl^ NaOH$$
 $NaOH$

(iv)
$$C_6H_5COCI \xrightarrow{NH_3} N$$


(v)
$$C_6H_5CO_2H$$
 $\xrightarrow{\text{conc. HNO}_3}$ $\xrightarrow{\text{conc. H}_2SO_4}$ O

(vi)
$$CH_3COC_2H_5 \xrightarrow{Conc. HCl} P$$

(vii) CH₃CHO
$$\xrightarrow{\text{Ag(NH}_3)_2^+\text{OH}^-}$$
 Q

(ix)
$$CH_3C \equiv CCH_3 \xrightarrow{H_2 \mid Pd} S$$

(x)
$$C_6H_5OH \longrightarrow Br_2 \longrightarrow T$$

සියලු ම හිමිකම් ඇව්රිණි/(மුழுப் பதிப்புரிமையுடையது/All Rights Reserved]

இ eom විතත ogc:)එකමේත්තුව ලි eom විතත ogc:)එකමේ වෙන්න පිළිබිණි කිරීම විතත ogc:)එකමේත්තුව ලී eom විතත ogc:)එකමේත්තුව ලේ eom විතත ogc:)එකමේත්තුව ලේ මත්තුව ලේ ම

අධනයන පෞදු සහතික පනු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

රසායන විදාහාව II இரசாயனவியல் II Chemistry II

- * Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- * Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

PART P __ FSSAV

Answer two questions only. (Each question carries 15 marks.)

 (a) The procedure given below was followed to determine the partition coefficient, K_D of butanedioic acid (BDA, HOOCCH₂CH₂COOH) between ether and water at 25 °C.

Initially, 20 g of solid BDA was shaken well with a mixture of approximate volumes of 100 cm³ of ether and 100 cm³ of water in a reagent bottle and the layers were allowed to separate. At this stage, some undissolved BDA was seen remaining at the bottom of the reagent bottle. Thereafter, a 50.00 cm³ volume of ether layer and a 25.00 cm³ volume of water layer were titrated with 0.05 mol dm⁻³ NaOH solution. The volumes taken from the ether and water layers required 4.80 cm³ and 16.00 cm³ of the NaOH solution respectively.

- (i) Calculate the partition coefficient, $K_{\rm D}$ for the distribution of butanedioic acid between ether and water at 25 °C.
- (ii) Calculate the solubility of butanedioic acid in ether, given that the solubility of this acid in water is 8.0 g dm⁻³.

 (4.0 marks)
- (b) Consider the following reactions. Thermodynamic data supplied are not for the standard state.

$$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$$
 $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$
 $AS/J K^{-1} \text{ mol}^{-1}$
 $AS/J K^{-1} \text{ mol}^{-1}$

- (i) Calculate ΔH and ΔS for the reaction $2CO(g) \rightarrow C(s) + CO_2(g)$. State giving reasons whether the sign of ΔS agrees with the reaction taking place.
- (ii) By means of a suitable calculation, predict whether the reaction given in part (i) above is spontaneous at 27 °C.

 (4.0 marks)
- (c) An excess amount of C(s) and 0.15 mol of $CO_2(g)$ were placed in a closed rigid 2.0 dm³ container and the system was allowed to reach equilibrium at a temperature of 689 °C. Once the equilibrium was achieved, the pressure in the container was found to be 8.0×10^5 Pa. (Take RT = 8000 J mol⁻¹ at 689 °C)
 - (i) Write an expression for the equilibrium constant, K_p for the reaction $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$.
 - (ii) Calculate K_p and K_c at 689 °C.
 - (iii) In another experiment, the container described above contains an excess of C(s) together with CO(g) and CO₂(g) at 689 °C. The initial partial pressure of each gas is 2.0 × 10⁵ Pa. Explain, with the aid of a calculation, the change in partial pressure of CO₂(g) when the system reaches equilibrium.

(7.0 marks)

- 6. (a) A 0.10 mol dm⁻³ solution of a weak acid, HA was prepared by diluting an appropriate amount of the pure weak acid to 25.00 cm3 with distilled water in a volumetric flask at 25 °C. The pH of this solution
 - Considering the equation, HA(aq) + H₂O(l) = H₃O⁺(aq) + A⁻(aq), calculate the dissociation constant,
 - (ii) A dilute solution of this weak acid, HA was titrated with a strong base, BOH. It was found that the pH of the titration mixture after reaching the equivalence point was 9.0. Calculate the concentration of the salt, AB in the titration mixture. ($K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \text{ at } 25 \text{ °C}$)
 - (iii) The above titration mixture was diluted hundred times by adding distilled water. Calculate the pH of the

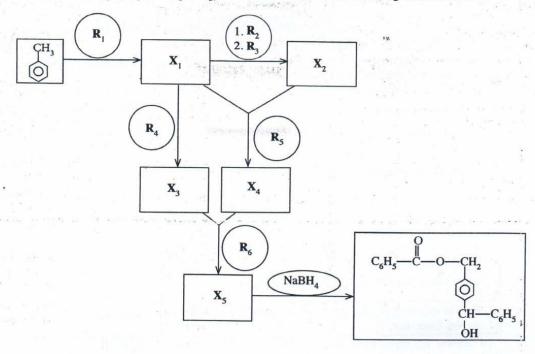
(5.0 marks)

- (b) AgBr(s) is a pale-yellow coloured salt sparingly soluble in water. Its solubility product, $K_{\rm sp}$ is 5.0×10^{-13} mol² dm⁻⁶ at 25 °C.
 - (i) Calculate the concentration of Ag+(aq) in a saturated solution of AgBr in equilibrium with solid AgBr
 - (ii) Solid AgBr together with 100.0 cm3 of the solution described in part (i) above were placed in a beaker. A volume of 100.0 cm3 of distilled water was added to the beaker and the mixture was stirred well until the equilibrium is reached. At this stage, some solid AgBr was still left at the bottom of the beaker. What could be the concentration of Ag+(aq) in this solution? Explain your
 - (iii) Using a suitable calculation, predict the observation expected when $10.0~\text{cm}^3$ of a $1.5 \times 10^{-4}~\text{mol dm}^{-3}$ ${\rm AgNO_3}$ solution and 5.0 cm³ of a 6.0 × 10⁻⁴ mol dm⁻³ NaBr solution are mixed at 25 °C.

(i) The pressure of the vapour phase in equilibrium with an ideal binary solution is P. The liquid phase mole fractions of the two components are X_1 and X_2 , and their respective saturated vapour pressures are P_1^0 and P_2^0 . Show that

$$X_1 = \frac{P - P_2^0}{P_1^0 - P_2^0}.$$

- (ii) The pressure of the vapour phase in equilibrium with a binary solution containing methanol and ethanol is 4.5×10^4 Pa at 50 °C. At this temperature the saturated vapour pressures of methanol and ethanol are 5.5×10^4 Pa and 3.0×10^4 Pa respectively. Consider that the solutions behave ideally.
 - I. Calculate the mole fractions of methanol and ethanol in the liquid phase.
 - II. Calculate the mole fractions of methanol and ethanol in the vapour phase.
- (iii) Based on the above calculations and given information, draw the vapour pressure composition diagram of the methanol - ethanol mixture at 50 °C. Consider that the solutions behave ideally. (5.0 marks)


7. (a) Using only the chemicals given in the list, show how you would carry out the following conversion.

Your conversion should not exceed 9 steps.

H2O, alcoholic KOH, Br2, Conc. H,SO, NaBH₄, C₂H₅MgBr/dry ether

(6.0 marks)

(b) Identify $\mathbf{R}_1 - \mathbf{R}_6$ and $\mathbf{X}_1 - \mathbf{X}_5$ in order to complete the following reaction scheme.

(7.0 marks)

(c) (i) Give the mechanism for the following reaction.

$$\begin{array}{ccc}
CH_3 & CH_3 \\
CH_3 & CH_3 & CH_3 \\
CH_3 & CH_3
\end{array}$$

$$CH_3 & CH_3 & CH_3$$

$$CH_3 & CH_3$$

$$CH_3 & CH_3$$

$$CH_3 & CH_3$$

(ii) The reaction of A with NaOH, gives in addition to B another product C. Give the structure of C.

(2.0 marks)

PART C - ESSAY

Answer two questions only. (Each question carries 15 marks.)

- 8. (a) The compound A (A = MX_n, M = a transition element that belongs to the 3d-block, X = ligands of the same type) when treated with excess dilute NaOH followed by H₂O₂ gives a compound B. When an aqueous solution of B is acidified with dil. H₂SO₄ compound C is produced. C when reacted with NH₄Cl gives compound D as one of the products. Heating solid D gives a blue coloured compound E, water vapour and an inert diatomic gas F. Ca metal when burnt in gas F gives a white solid G. The reaction of G with water liberates a gas H. This gas forms white fumes with HCl gas. The metal Na reacts with liquid H to give a colourless diatomic gas I as one of the products. When an aqueous solution of A is treated with excess Na₂CO₃, a coloured precipitate is formed. The precipitate is filtered and the filtrate is acidified with dil HNO₃. Addition of AgNO₃(aq) to this solution gives a white precipitate which is soluble in dilute NH₄OH.
 - (i) Identify A, B, C, D, E, F, G, H and I.
 - (ii) What will you observe when a solution containing C is treated with dil. NaOH? Give the balanced chemical equation relevant to this observation.

(5.0 marks)

(b) An aqueous solution T contains three metal ions. The following experiments were carried out to identify these metal ions.

Experiment	Observation			
1. T was acidified with dilute HCl, and $\rm H_2S$ was bubbled through the clear solution obtained.	A black precipitate Q ₁ was formed.			
 Q₁ was removed by filtration. The filtrate was boiled till all the H₂S was removed. The solution was cooled, and NH₄Cl and NH₄OH were added. 	A clear solution was obtained.			
H ₂ S was bubbled through the solution.	A black precipitate Q_2 was formed.			
 Q₂ was removed by filtration. The filtrate was boiled till all the H₂S was removed, and a solution of (NH₄)₂CO₃ was added. 	A white precipitate Q_3 was formed.			

Experiments for precipitates Q_1 , Q_2 and Q_3 .

Experiment	Observation
 Q₁ was dissolved in hot dilute HNO₃. After cooling, the solution was neutralized and KI was added. 	A precipitate and a brown solution were formed.
2. \mathbf{Q}_2 was dissolved in warm dilute HCl. The solution was cooled, and dilute $\mathrm{NH_4OH}$ was added.	A green precipitate was formed.
More dilute NH ₄ OH was added to this mixture.	The green precipitate dissolved giving a deep blue solution.
 Q₃ was dissolved in conc. HCl and the solution was subjected to the flame test. 	

- (i) Identify the three metal ions in solution T. (Reasons are not required.)
- (ii) Write the chemical formulae of the precipitates Q_1 , Q_2 , and Q_3 .

(5.0 marks)

(c) The following procedure was used to determine the concentration of Al3+ ions in solution U.

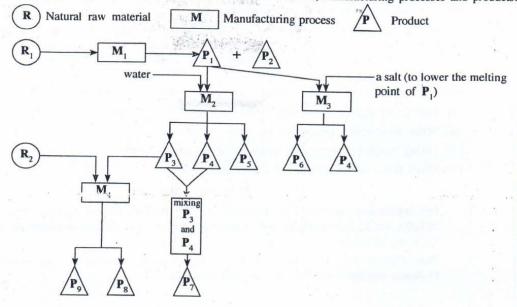
Excess 8-hydroxyquinoline (commonly known as oxine, OH. C9H7ON) was added to 25.0 cm3 of solution

U at pH = 5 to precipitate Al^{3+} ions as aluminium oxinate, $Al(C_9H_6ON)_3$. The precipitate was filtered, washed with distilled water and dissolved in warm dilute HCl containing excess KBr. Thereafter, 25.0 cm³ of 0.025 mol dm⁻³ KBrO₃ was added to this solution. The reactions taking place in the above procedure are as follows:

$$Al^{3+}(aq) + 3 \bigcirc OH^{N}$$
 $\longrightarrow Al(C_9H_6ON)_3 \downarrow + 3H^+(aq)$
 $Al(C_9H_6ON)_3(s) \longrightarrow Al^{3+}(aq) + 3 \bigcirc OH^{N}$

KBrO3 is a primary standard for the generation of Br2 in acidic medium.

$$BrO_3^-(aq) + 5Br^-(aq) + 6H^+(aq) \longrightarrow 3 Br_2(aq) + 3H_2O(l)$$


$$O(l) + 2Br_2(aq) \longrightarrow Br + 2HBr(aq)$$

The excess Br_2 is reacted with KI to give I_3^- . Then I_3^- was titrated with 0.05 mol dm⁻³ $Na_2S_2O_3$ using starch as the indicator. The volume of $Na_2S_2O_3$ required to reach the end point was 15.00 cm³. Calculate the concentration of Al^{3+} in solution U in mg dm⁻³. (Al = 27)

(5.0 marks)

 (a) A flow chart drawn by a final year university student to establish a chemical industry in the future in Sri Lanka is given below.

The following symbols are used to represent natural raw materials, manufacturing processes and products.

P2 is used to produce a halogen that exists as a liquid at room temperature.

P7 is used as a bleaching agent/strong oxidizing agent.

P₈ is used daily to maintain good hygiene.

- (i) Identify the two natural raw materials \mathbf{R}_1 and \mathbf{R}_2 .
- (ii) Identify the **four** manufacturing processes \mathbf{M}_1 , \mathbf{M}_2 , \mathbf{M}_3 and \mathbf{M}_4 [e.g. manufacture of ammonia or Haber process]
- (iii) Identify the products P_1 to P_9 .
- (iv) Briefly describe the steps involved in processes \mathbf{M}_1 and \mathbf{M}_3 . (diagrams of equipment not required.)
- (v) Draw and label the equipment used in the process M2.
- (vi) Identify the salt used in the process M3.
- (vii) Give one use for each of P5, P6 and P9.

(7.5 marks)

(b) Answer these questions using the list given below.

 $\rm CO_2$, $\rm CH_4$, volatile hydrocarbons, NO, NO₂, N₂O, NO₃, SO₂, H₂S, CFC, CaCO₃, liquid petroleum and coal

- (i) Identify two gaseous species that are responsible for acid rain and briefly explain, with the aid of balanced chemical equations, how these species cause acid rain.
- (ii) Acid rain has harmful effects on the environment. Briefly discuss this statement
- (iii) Identify three species that are emitted to the environment due to the burning of fossil fuel, along with one adverse environmental issue for each.
- (iv) "The existence of trace amounts of industrial synthetic species in the atmosphere can cause adverse environmental issues." Explain this statement using CFC as an example.
- (v) Identify five greenhouse gases and state a human activity by which each of these gases enters the atmosphere.
- (vi) Briefly explain using balanced chemical equations, how a natural substance (select from the list) can be used to remove acidic gases emitted during the burning of fossil fuel.

(7.5 marks)

10. (a) X, Y and Z are coordination compounds. They have an octahedral geometry. The atomic composition of the species in the coordination sphere (i.e. metal ion and the ligands coordinated to it) in X, Y and Z are FeH₁₀CNO₅S, FeH₈C₂N₂O₄S₂ and FeH₆C₃N₃O₃S₃ respectively. The oxidation state of the metal ion in all three compounds is the same. In each compound, two types of ligands are coordinated to the metal ion. If these compounds contain non-coordinated anions, they are of the same type.

An aqueous solution S contains X, Y and Z in the molar ratio 1:1:1. The concentration of each compound in solution S is 0.10 mol dm⁻³. When excess $AgNO_3$ solution was added to 100.0 cm^3 of S, a yellow precipitate was formed. The precipitate was washed with water and oven dried to a constant mass. The mass of the precipitate was 7.05 g. This precipitate does not dissolve in conc. NH_4OH . (Relative molecular mass of the chemical compound in the yellow precipitate = 235)

- (i) Identify the ligands coordinated to the metal ions in X, Y and Z.
- (ii) Write the chemical formula of the yellow precipitate.
- (iii) Giving reasons, determine the structures of X, Y and Z.
- (iv) Given below is the structure of ethylenediamine (en) .

$$H_2\ddot{N}-CH_2-CH_2-\ddot{N}H_2$$

Ethylenediamine coordinates to the metal ion M^{3+} through the two nitrogen atoms, to form the complex ion Q (i.e. metal ion and ligands coordinated to it). Q has an octahedral geometry. Write the structural formula of Q and draw its structure.

Note: Consider that only ethylenediamine is coordinated to the metal ion. Use the abbreviation 'en' to denote ethylenediamine in your structural formula.

(7.5 marks)

- (b) You are provided with the following.
 - 1.0 mol dm⁻³ aqueous solutions of Al(NO₃)₃, Cu(NO₃)₂ and Fe(NO₃)₂
 - Al, Cu and Fe metal rods
 - · Chemicals required to use in salt bridges
 - · Conducting wires and beakers

In addition to the above, the following data is also provided.

$$E_{\text{Fe}^2/\text{Fe}}^0 = -0.44 \text{ V}, \qquad E_{\text{Al}^3/\text{Al}}^0 = -1.66 \text{ V}, \qquad E_{\text{Cu}^2/\text{Cu}}^0 = +0.34 \text{ V}$$

- (i) Diagram the three electrochemical cells that can be constructed using the above materials. Indicate the anode and cathode along with their signs in each cell.
- (ii) For each electrochemical cell drawn in part (i) above
 - I. give the cell notation.
 - II. determine $E_{\text{cell}}^{\text{o}}$.
 - III. give balanced chemical equations with physical states for the electrode reactions.
- (iii) Giving reasons, explain which of the following compounds is/are appropriate to use in salt bridges.NaOH, NaNO₃, acetic acid
- (iv) Consider the electrochemical cell which shows the highest E_{cell}^0 initially. Assume that this electrochemical cell has been constructed using equal volumes of the relevant solutions in each compartment and their volumes do not change during the experiment.

The two electrodes of this cell were connected using a conducting wire and after some time, the concentration of metal ions in the anode compartment was found to be C mol dm⁻³. Express the concentration of metal ions in the cathode compartment in terms of C.

(7.5 marks)

The Periodic Table

ı	1 H		,		÷	E	4	M 4	Var	tall and				1%				2 He
	3	4					in the	Section 1		10			5	6	7	8	9	10
	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
	Na	Mg						d September 1					Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	.76	77	78	79	80	81	82	83	84	85	86
a i	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Unu	The State of the	100,000					

Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71