

LEVIBALIKA VIDYALAYA — COLOMBO

13 වන ලේණිට පළමු වාර පරියෂණය - 2017 නොවැම්බර් Grade 13 First Term Test November 2017

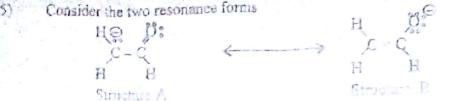
රසායන විදපාව I Chemistry I

පැය ලදකයි I wo hours

Important

- This paper consist of 9 pages
- Answer all the questions
- The use of calculators is not allowed
- Write your index number in the space provided in the answer sheet
- In each of the questions 1 to 50, pick one of the alternatives (1) (2) (3) (4) (5) which is correct as most appropriate and shade its number on the answer sheet provided

 $= 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ Universal gas constant R $= 6.022 \times 10^{23} \,\mathrm{mol}^{-1}$ Avergadro's constant NA $= 3.0 \times 10^8 \, \text{ms}^{-1}$ Speed of light $= 6.626 \times 10^{-34} \, \text{Js}$ Planck's constant


- Number of different values possible for magnetic quantum number (mi), if azimuthal quantum numbe 1) . is I for a given quantum number, 3) 2(l+1) 4) 2l+1
 - 1) 2 l
- 2) 2l 1

- 5) 2(l-1)
- Which of the following species shows the highest electronegativity for N, 2)
 - 1) NO₂Cl
- 2) NH₂OH
- 3) NO_4^{3-} 4) NO_2^{-}
- 5) NH
- Increasing order of C O bond length of species CH3CH2OH, CH3COO, HCHO and CO32 is, 3)
 - 1) CH₃CH₂OH < CH₃COO < HCHO < CO₃²
 - 2) HCHO < CH₃COO < CO₃² < CH₃CH₂OH
 - 3) CO₃² < CH₃COO < CH₃CH₂OH < HCHO
 - 4) CH₃CH₂OH < CH₃COO < CO₃²⁻ < HCHO
 - 5) CH₃CH₂OH < CO₃² < CH₃COO < HCHO
- Resonance structure of XO₃ is given below. 4)

$$SO = X - OS$$

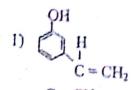
To which group of the periodic table does element X belong to?

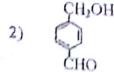
- 1) 14
- 2) 15
- 3) 16
- 4) 17
- 5) 18

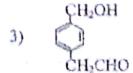
Which of the following is correct regarding structures A and B?

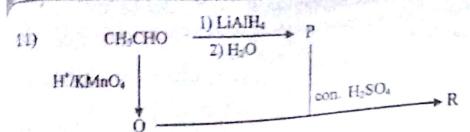
- 1) Structure A is more stable.
- 2) Structure B is more stable.
- 3) All atoms of structure A and B lie on one plane.
- Both C atoms in structure B are sp³ hybridized.
- 5) Respective bond angles in structure A and B are equal.
- Increasing order of oxidation no of C in HCHO, HCOOH, CCl4 and CH3NH2 are
 - 1) HCHO < CH3NIH2 < CCl4 < HCOOH
 - 2) CH₃NH₂ < HCHO < HCOOH < CCl₄
- 4) CH3NH2 < HCOOH < HCHO < CCL4
- 5) HCHO < CH₃NH₂ < HCOOH < CCl₄
- Number of photons in a beam of visible light with 700 nm wave length emitting an energy of 4 J
 - 1) 1.41×10^{19}
- 2) 1.41×10^{28}
- 3) 1.43 x 10⁻¹⁹

- 4) 1.41 x 10 -28
- 5) 6.022 × 10²
- Increasing order of stability of following carbocation is,


b) $CH_3 - C - CH = CH_2$


- c) CH₃ C C₂H₅ CH₃
- d) CH H-C=C-CH, 2) d<a<c
b 3) a<c<d
b
- 1) d < b < a < c


- 4) a < d < b < c
- 5) a < d < c < b
- IUPAC name of the following organic compound is,


- 1) 4 methyl 4 hydroxy 3 pentenal
- 2) 4 methyl 4 ol 2 hexenal
- 4 ethyl 4 hydroxy 2 pentenal
- 4) 4 hydroxy 4 methylhex 2 enal
- 5) 4 ethyl 4 hydroxy 3 pentenal
- 10) Observations given by compound A with some reagents are given below.
 - a) Decolorize acidic KMnO4
- Forms a gas with Na metal.
- Forms a white precipitate with tollen's reagent.

Compound A can be,

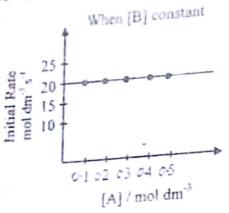
P. Q and R in the above reaction scheme are, Structures

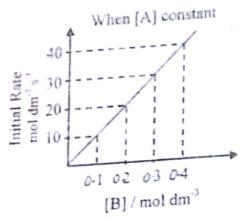
CH₃ - CH₂ - OH

$$CH_3CH_2O - CH_2CH_3$$
 O
 $CH_3 - C - O - C_2H_5$

2) CH₂CH₂OH

$$C_2H_5 - C - O - CH_3$$


3) CH₃CH₂OH


4) CH2 = CH2

- 6) CH₅ C OH
- CH3CH2OH

 $CH_3 - CH_2 - O - C_2H_5$ O $CH_3 - C - O - C_5H_5$

The following graphs show the results of an experiment done to find the order of the reaction 12) $A+B \rightarrow C+D$

Orders with respect to A and B respectively are,

- 2) 1, 2
- 4) 0, 2
- 5) 2, 1

Enthalpy of bond dissociation of bonds S = O(g) and S - O(g) are $x \text{ kJ mol}^{-1}$ and $y \text{ kJ mol}^{-1}$ respectively. S - O(g) mean bond dissociation enthalpy of S - O in SO_3^{2-} anion is, 13)

- 1) $\frac{x+y}{2}$
- 2) $\frac{x}{2}$ 3) $\frac{2y+x}{3}$ 4) y
- 5) $\frac{3y+x}{2}$

Which of the following statement is correct? 14)

- Density of a gas at a given temperature is always directly proportional to its molar mass.
- 2) Density of each of the gases of a mixture of gases under constant temperature and pressure, is
- 3) Density ratio of different gases with similar masses in a closed container is equal to the ratio of relative molecular masses.
- Mass of a gas inversely proportional to universal gas constant.
- 5) Rate of diffusion of a gas is directly proportional to its molar mass.

5)	2.00 g of this mixture i	s heated until a constar	taining only CaCO ₃ , Mgo at mass is obtained mass 0, Mg = 24, C = 12, O = 1	of the residue	is 1 : 1. e is 1.12 g. Mat.
	1) 25%	2) 50%	3) 40%	4) 35%	5) 30%
(6)	Volume of 0.6 mol dm ⁻³ in neutral medium is (in	Na ₂ S ₂ O ₈ required to recm ³), (Cr ³⁺ is oxidized	eact with 25.00 cm ³ of 0 to $Cr_2O_7^{2-}$ and S_2O_8 is re-	.8 mol dm ⁻³ duced to SO ₄ ²	Cr ³⁺ (aq) solution
	1) 10	2) 50	3) 20	4) 25	5) 30
17)	Correct statement about 1) ΔG , ΔH and ΔS are 63) ΔG and ΔH are negative.	on spontaneous 25° C but the above reaction at 2: equal. tive and Δ S is positive.	t spontaneous above 25°C 5°C is, 2) ΔG, ΔH and ΔS are p 4) ΔG and ΔS are nega	oositive.	positive.
	5) ΔG and ΔH are posit	ive and ΔS is negative.			
18)	IUPAC name of [CoCld 1) pentaamminechlorid 3) chloropentaamminec 5) pentaminechloridoco	ocobalt(III) bromide.	2) pentammines4) pentaaminos	-	
19)	added to the above solut		ch decolourizes the color ned first and then it dissolv 3) MnS 4) NiSo	ves. A can be,	When NaOH is
20)	oxidation numbers. The	solubility of MI and M ctively. When each s	rived from the transition e F_2 are S_1 and S_2 respectivalt is in equilibrium wing is correct.	ely and solubi	lity products are
	1) $S_1 = S_2$	2) $S_1 = S_2^2$	3) $S_1^2 = S_2$ 4) S	$S^1 = 4S_2^2$	5) $S^1 = 2S_2^2$
21)	W Y	Z OH			
	$\bigcirc \xrightarrow{W} \stackrel{A}{\longrightarrow} \stackrel{Y}{\longrightarrow} 1$	~			
		СООН			
	W, X, Y and Z reagents	respectively are,			
	W 1) CH₃CH₂COCI	X Anh. AlCl ₃	Y CH₃MgBr	$\frac{\mathbf{Z}}{\mathrm{H_3O}^{+}}$	
	2) CH ₃ -C-CI	Anh. AlCl ₃	HCN	H ₃ O [*]	
	3) CH ₃ CH ₂ Cl	Anh. AlCl ₃	HCN	H ₃ O*	
	4) HCN	H ₃ O ⁺	Anh. AICI3	CH ₃ C	COCI
	5) CH ₃ MgBr	H₃O ⁺	HCN	H ₂ O ₂	

22)	\odot		0	⊢СН	= CH ₂
-----	---------	--	---	-----	-------------------

Most suitable reaction scheme for the above conversion is,

- $\begin{array}{c}
 O \\
 CH_3 C Cl \\
 \hline
 Anhydrous AlCl_3
 \end{array}$ 1) LiAlH₄ 2) H₃O⁺ NaBH₄ CH₃CH₂Cl
 Anhydrous AlCl₃
- When excess HCl is added to an aqueous solution a brown gas was formed while the solution turned dark blue. When excess NH3 (aq) was to another portion of the initial solution a yellow - brown solution was formed which turned darker after some time. When dilute HCl was added to the initial 23) solution it turned brown. The initial solution contains,
 - 1) Cu(NO₂)₂
- 2) Cu(NO₃)₂
- 3) Fe(NO₂)₃
- 4) Co(NO₂)₂
- 5) Co(NO₂)₃
- 25.0 cm3 of 0.1 mol dm-3 HCl(aq) is added to 0.1 g of a sample containing NaOH. When the above solution is diluted to 100.0 cm3 using distilled water, pH of the resultant solution was 2. Mass 24) percentage of NaOH in the sample is, (Na - 23, H-1, O-16) 5) 80% 4) 60% 3) 56%
 - 1) 25%
- 2) 40%
- The system which does not form a buffer solution when mixing is, 25)
 - 1) 0.2 mol dm⁻³ HCOONa 50.0 cm³ + 0.1 mol dm⁻³ HCl 50.0 cm³
 - 2) 0.5 mol dm⁻³ CH₃COOH 50 cm³ + 0.2 mol dm⁻³ NaOH 50.0 cm³
 - 3) 0.2 mol dm⁻³ HCOOH 50.0 cm³ + 0.5 mol dm⁻³ NaOH 50.0 cm³
 - 4) 0.2 mol dm⁻³ NH₄OH 50.0 cm³ + 0.2 mol dm⁻³ CH₃COOH 50.0 cm³
 - 5) 0.2 mol dm⁻³ Na₂CO₃ 50.0 cm³ + 0.2 mol dm⁻³ HCl 50.0 cm³
- A saturated solution of Ca(OH)2 is prepared by dissolving Ca(OH)2 powder in 100.0 cm3 of water at 25 °C. This was filtered and 25.0 cm³ of the filtrate was titrated against 0.01 mol dm⁻³ HCl solution. 26) Volume of HCl required for the end points is 12.5 cm³. The solubility product (Ksp) of Ca(OH)_b at

25 °C in mol3 dm-9.

- 1) 1.25 x 10⁻¹⁸
- 2) 6.25×10^{-8} 3) 2.5×10^{-5} 4) 8×10^{-4}
- 5) 4 x 10°

4) $\frac{3P}{5}$ 5) $\frac{2P}{5}$ 2) $\frac{P}{2}$ 3) $\frac{2P}{3}$ 1) $\frac{P}{2}$ The following equilibrium is established when ethanoic acid and ethanol are heated with conc. H₂SO₄ 29) $CH_1COOH(I) + CH_1CH_2OH(I) \rightleftharpoons CH_3COOC_2H_3(I) + H_2O(I) : \Delta H < O$ Number of moles of CH3COOC2H3 in the mixture of equilibrium can be increased by, Adding water to the mixture at equilibrium. 2) Increasing the temperature of the system. Adding excess conc H₁SO₂ to the mixture Adding dilute NaOH to the mixture. Number of moles of CH₃COOC₂H₄ cannot be increased by any of the above. Consider the following equilibrium for dissolving AgCl(s) in dilute NH₃ 30) $AgCl(s) + 2NH_1(aq) = [Ag(NH_1)_2]^* (aq) + Cl^* (aq) K = 3.2 \times 10^{-3}$ The equilibrium for the formation of [Ag(NH₁)₂]* is as follows, $Ag^{+}(aq) + 2NH_{1}(aq) = [Ag(NH_{3})_{2}]^{+}(aq)$ $Kf = 1.6 \times 10^{7} \text{ mol}^{-2} \text{ dm}^{6}$ Calculate Ksp of AgCl (s) in the above temperature. (mol² dm⁻⁶) 1) 5.12×10^{-4} 2) 2×10^{-10} 3) 5×10^{9} 4) 4×10^{3} 5) 8×10^{-7} Instructions for question No 31 to 40 For each of the questions 31 to 40, one or more responses (a), (b), (c) and (d) given is/are correct. Select the correct response/responses. In accordance with the instructions given on your answer sheet, mark (1) if only (a) and (b) are correct (2) if only (b) and (c) are correct (3) if only (c) and (d) are correct (4) if only (d) and (a) are correct (5) if any other number or combination of responses is correct. Summary of above information (1) (5) (2)(4) (3)If any other number or Only (a) and (b) Only (b) and (c) Only (c) and (d) Only (d) and (a) combination of correct correct correct correct responses correct Scanned by CamScanner

Which of the following statement is correct regarding a strong acid strong base titration,

The vertical portion of the pH curve decreases as the concentration of the acid and base increases.

 $N_2(g)$ and $H_2(g)$ are mixed in a mole ratio of 1:3 and allowed to reach the following equilibrium.

Any indicator can be used for these titrations under any condition.

Mole percentage of N2 remaining in the system at equilibrium is 50%

If equilibrium pressure is P, partial pressure of H2 gas is,

Equivalent point pH is 7 for any acid or base

 $N_2(g) + 3H_2(g) \Longrightarrow 2NH_1(g)$

Equivalence point pH does not depend on the concentration of acid or base.

Solution in the flask at half equivalence point shows properties of a buffer.

27)

28)

- 31) Correct statement's regarding NH3 is,
 - a) NH3 can be formed by heating any ammonium salt with a strong base
 - b) NH₃ reacts with excess Cl₂ forming NCl₃
 - c) NH3 is liberated when NaNO3 is heated with Fe powder.
 - d) NH₃ reacts with Na forming metal nitride and H₂ gas.
- Yellow coloured complexes are, 32)
 - a) $[Ni(NH_3)_6]^{2+}$ and $[MnCl_4]^{2-}$
 - c) [CuCl₄]² and [FeCl₄]

- b) $[NiCl_4]^{2-}$ and $[FeCl_4]^{-}$ d) $[Ni(H_2O)_6]^{2+}$ and $[Cu(OH_2)Cl_2]$
- Which of the following statement/s is/are correct regarding the molecule given below. 33)

- a) It shows stereoisomerism but does not show geometrical isomerism
- b) It is optically active
- c) The product formed by Zn / (Hg) with conc HCl shows optical isomerism.
- d) The product formed by the above compound with HBr has two optically active isomers.
- Which of the following statement/s is/are correct regarding the reaction given below. 34)

$$\begin{array}{c|cccc}
OCH_3 & OCH_3 & OCH_3 \\
\hline
O & conc. H2SO4 & OCH3 & OCH3 \\
\hline
O & NO2 & OCH3
\\
P & Q
\end{array}$$

- a) Major product is P.
- b) Major product is Q.
- c) It is an electrophilic addition reaction.
- d) A carbocation is formed during the first step of the reaction.
- Which of the following statement/s is/are correct 35)
 - a) Unit of rate constant of a reaction does not depend on order of the reaction.
 - b) Order with respect to a given reactant in a chemical reaction is not charged, even if the concentration of one reactant is comparatively greater than the other.
 - c) A catalyst does not affect the activation energy of the reaction.
 - d) When concentration of reactants are increased under constant temperature, Rate of reaction increases due to the increase of the fraction of molecules greater than the activation energy
- $P(s) \rightarrow 2X(g) + Y(s)$ for the above reaction $\Delta H^{\theta} = +180 \text{ kJ mol}^{-1}$ $\Delta S^{\theta} = +160 \text{ J K}^{-1} \text{ mol}^{-1}$ Which 36) of the following is/are correct regarding the above reaction.
 - a) Reaction is spontaneous at 25°C
 - b) ΔG⁸ of the reaction at 25°C is -132.32 kJ mol⁻¹
 - c) ΔS^θ is positive above 1000 K
 - d) At temperature above 1125 K of this reaction becomes negative and decomposition occurs spontaneously.

- Which of the following is true regarding chemical kinetics? 37)
 - a) Order and molecularity of an elementary reaction is equal.
 - b) When a reaction proceeds under constant temperature rate of reaction decreases due to the reduction of the fraction of molecules that have exceeded the activation energy.
 - c) Molecularity of the rate determining step of a multi step reaction is equal to the number of steps.
 - d) Catalyst increases the rates of both forward and reverse reactions.
- Which of the following cation/s, 38)
 - Form a precipitate which is insoluble in excess NH₄OH
 - Form a precipitate which is insoluble in excess NaOH
 - a) Fe3+
- b) Mg²⁺ c) Al³⁺
- d) Cu2+
- Which of the following is/are correct regarding $H_2O_2\,$, 39)
 - a) It undergoes disproportionation when heated
 - b) It is a bleaching agent and reduces coloured surfaces
 - c) It is a non polar molecule.
 - d) It is reduced to water by SO2
- n moles of O3 was allowed to reach equilibrium in a rigid container at T K and 1 x 105 Pa. The molar 40) dissociation was 0.4.

$$O_3(g) \iff \frac{3}{2}O_2(g)$$

Which of the following statement is/are true regarding the above equilibrium system,

- a) The number of moles of O₃ and O₂ are equal.
- b) The density of the system changes as it reaches equilibrium
- c) equilibrium pressure is 1.5 x 10⁵ Pa
- d) The density of the equilibrium mixture is given by $\frac{48 \times 10^5}{\text{P.T.}}$

Instructions for question No. 41 to 50

In question no. 21 to 25, two statements are given in respect of each question.

From the table given below, select the response out of the responses (1), (2), (3), (4), (5) that best fits the two statements given for each of the questions and mark appropriately on your answer sheet.

Response	First statement	Second statement
(1) (2) (3) (4) (5)	True True True False False	True and correctly explains the first statement. True but does not explain the first statement correctly. False True False

	First statement	Second statement
41)	If all carbon atoms lie on one plane, they have same hybridization.	All C atoms of the compound (CH ₃) ₃ CCH ₂ O C CH ₂ Cl which lie on same plane have sp ² hybridization.
42)	Reactions having a positive entropy change occur always spontaneously under high temperature.	
43)	pH of pure water is always 7.	Always $[H_3O^1] = [OH]$ in pure water.
44)	CH ₃ COONH ₄ (aq) solution is neutral at 25 ⁰ C.	Cation or anion formed by the weak base or weak acid do not undergo hydrolysis.
45)	The concentration of chlorides can be determined by titrating against acidic K ₂ Cr ₂ O ₇	K ₂ Cr ₂ O ₇ is a primary standard and also a strong oxidizing agent.
46)	Zn has the lowest melting point among the transitional elements.	Contribution to the mobile electron reservoir is less by the elements which contain a stable electronic configuration.
47)	Solubility of hydroxides of group 2 increase down the group.	Hydration enthalpy of cations of group 2 increases down the group.
48)	forms CH ₂ Cl, reacts with dilute NaOH and forms CH ₂ OH by a single step nucleophilic substitution mechanism.	
49)	An aqueous solution of AlCl ₃ is acidic.	AICI3 can act as a lewis acid.
50)	Compressibility factor of CO_2 under low pressures is less than 1. $(Z < 1)$	CO ₂ molecules have dipole interactions.

දේවී බාලිකා විදහාලය - කොළඹ s DEVI BALIKA VIDYALAYA – COLOMBO 8

I3 වන ලේණිය පළමු චාර පරිසනණය - 2017 කොචැම්බර් Grade 13 First Term Test November 2017

රසායන	විදහාව	il
Chemist	TV	11

පැය තුනයි Three hours

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Grade	3
Mana.			
manne:	***************************************		/

- A periodic table is provided
- Use of calculators is not allowed.

# rt A - Structured Essay (pages 2 - 9)

- Answer all the questions on the question paper itself.
- Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected.

## t B and Part C Essay (pages 10 - 15)

- Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
- * At the end of the time allotted for this paper, tie the answers to the three Parts A, B and C together so that Part A is on top and hand them over to the Supervisor.
- * You are permitted to remove only Parts B and C of the question paper from the Examination Hall
- Universal gas constant R = 8.314 JK⁻¹ moΓ¹
- * Avogadro constant  $N_A = 6.022 \times 10^{23} \text{ mo} \Gamma^{-1}$

For Examiner's Use Only

1)	a)	Arrange the following in decreasing order of the property given in paramisesis.
		i) CaO, MgO, SrO, BaO (Solubility in water)

iii) NO, 
$$NO_2^-$$
,  $NH_2OH$ ,  $NO_3^-$  (Bond length of  $N-O$ )

v) 
$$N\mathring{O}_2$$
,  $ICI_4^-$ ,  $I_1^-$ ,  $IO_2^-$  (Total number of lone pairs in the ion)

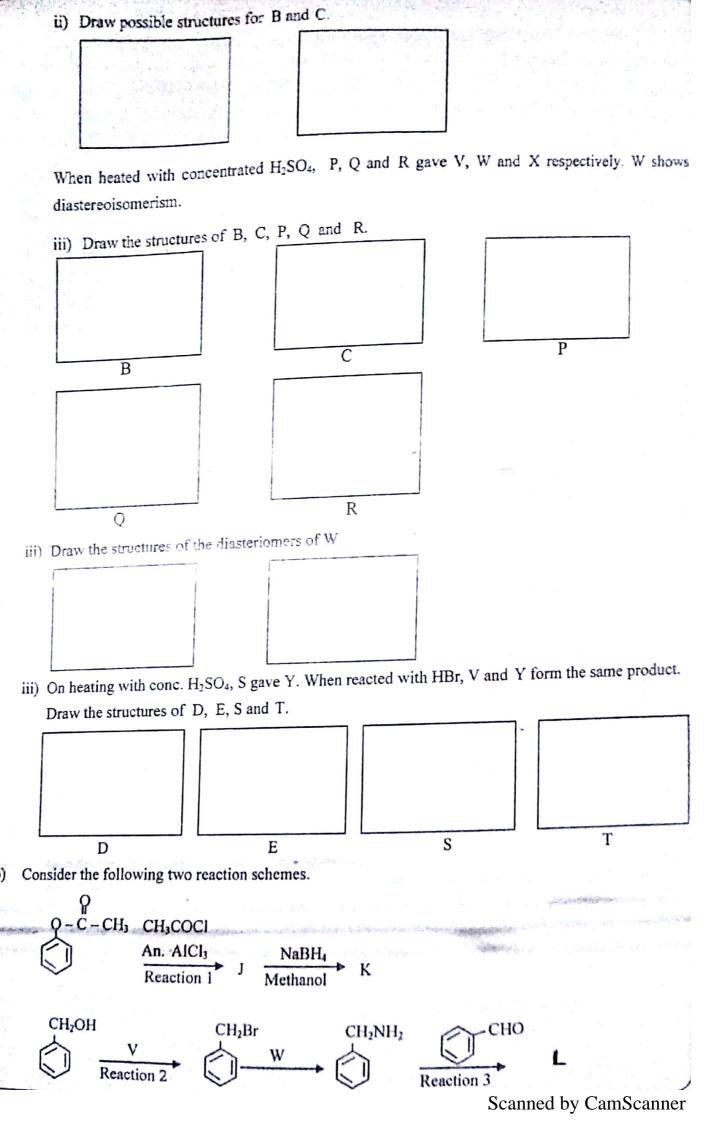
(2.0 marks)

b) The ester Methyl carbomate can be prepared by the reaction of methanol with urea. This carsinogenic as well as used to synthesize certain medicines and pesticides. The molecular formula of methyl carbamate is C₂H₅NO₂. Its skeletal structure is given below. No H atoms are attached to O atoms.

$$O^{3}$$
 $N^{1} - C^{2} - O^{3} - C^{4}$ 

i)	Draw the most	acceptable	lewis	structure	for	the	above	molecule	ì,
----	---------------	------------	-------	-----------	-----	-----	-------	----------	----

-


ii) Find the formal charges and oxidation numbers of the atoms N¹, C², O³ and C⁴, and write them in the table provided.

Atom	N ¹	C ²	0,	C4
Formal Charge				
Oxidation number	-desirable	the same of the same of the same of	planta proportion of the state of the test of the state o	

iii) Draw resonance structures for the above molecule except lewis structure drawn in part (i) above.

,	accor	ding to the ord	ler of increasi	ing electron	egetivity.		labelled as N ¹ ,	C', O' and
v)	The le	wis structure o	of an oxo acid	d of phosphe	erous is gi	ven below.		
.,	-110 1	Wis structure o		:0:				
			н <b>— Р</b>	-Ö-P	_Ö—H			
			II . I	· · ·	<u></u> Н			
				-tota tha f	allowings	of the ator	ns P and O mer	tioned in the
			lewis structur	e, state the i	Onewings	of the dior	ns P and O mer	moned in the
		below.	and the a	tom				
	i) th	e VSEPR pairs e electron pairs	s around the a s geometry ar	ound the ato	in.			
	ii) th	ape around the	e atom.					
	iv) th	e hybridization	of the atom.					
		ond angle.						
				$Q^7$				
			$H^1 - P^2$	$-0^{3} - P^{4} - 0^{8}$	O ₂ – H ₀			
			H	0 O ₈ -	H			
				1	D ²	O ³	$P^4$	O ⁵
	1	V5EPRpairs						
	1.							
	П.	electron pair	geometry					-
	III.	shape						
	IV.	hybridization						
	V.	bond angle.						
	below I. I II. C III. F	for the atomic / for the lewis st $0^2 - 0^3$ ; $0^3 - P^4$ ; $0^4 - 0^5$ ; $0^5 - H^6$ ;		in (v) above	O ³ P ⁴		f the sigma (o	
								(6.0 mar)
i)	inter m	e the following olecular interactions, CH ₃ CHC	ction in each s	pecies in the	table giv	boiling poi	ints and state th	ne type of
	increa point	sing order of bo	oiling (ht)					
	:	olecular attract			-			
	interm	lorecular attract	ion		-			

		Lattice structure	Primary interaction	secondary interac
	SiC (s)			
	Na (s)		A 3 1 1 2 2 2 2	
	Ice			
	Dry ice			
				(2.0 m
per not wit	iodic table. X does show a considerb	n is based on the non consect not show a colour in the flan le reaction with cold water. . Z exists as a diatomic mo	me test but burns with a br Y burns with a blue flame	ight flame in air. X e in air and forms
i)	Identify X, Y and	Z.		
	Y	Ү	7	
ii)	Write balanced ch	emical equations for the reac	tions of X with warm water	r and with air.
			••••	
iii)	Y shows variable example for each.	oxidation states. Write all s	stable oxidation states for	med by Y and give
iv)	An oxide of Y s	hows both oxidizing and re	educing properties. Write	half reactions to
iv)		hows both oxidizing and recing properties of it in acidic		half reactions to
iv)				half reactions to
iv)	oxidizing & reduc			half reactions to
	oxidizing & reduction  Reduction	cing properties of it in acidic	medium.	half reactions to
iv)	oxidizing & reduction  Reduction		medium.  iv) above.	half reactions to
	oxidizing & reduction  Reduction	ief, to identify the oxide in (	medium.  iv) above.	half reactions to
	oxidizing & reduction  Reduction	ief, to identify the oxide in (	medium.  iv) above.	half reactions to
	oxidizing & reduction  Reduction  Write a test in br	ief, to identify the oxide in (	iv) above.	



$2X + Y \rightarrow$			nine the overall order of	the above reaction
Eve	eriment	Initial concentr	ations / moldm ⁻¹	Initial rate
Expe	innen	X	Y	mol dm ⁻¹ s
AND ORDERS OF STREET STREET AND STREET	The second secon	1 x 10 ⁻²	1 x 10°2	2 x 10 ⁻⁶
The state of the s	2	$2 \times 10^{-2}$	1 x 10°2	8 x 10 ⁻⁶
	3	$2 \times 10^{-2}$	$2 \times 10^{-2}$	8 x 10 ⁻⁶
Secretary Secretary	4	3 x 10°2	$3 \times 10^{-2}$	18 x 10 ⁻⁶
ii) Čalcı	ilate the order v	with respect to Y.	je	
		to the Authorite to the Control of t		
iii) What	is the overall c	order of the reaction.		
iv) Calcu	late the initial	rate of the reaction, if to	he initial concentration	
iv) Calcu	late the initial concentration	rate of the reaction, if to of Y is 5 mol dm ⁻³ .		
iv) Calcu	late the initial concentration	rate of the reaction, if to of Y is 5 mol dm ⁻³ .		
iv) Calcu	late the initial concentration	rate of the reaction, if to of Y is 5 mol dm ⁻³ .		
iv) Calcu	late the initial concentration	rate of the reaction, if to of Y is 5 mol dm ⁻³ .		
iv) Calcuinitial	onyl compound	rate of the reaction, if to of Y is 5 mol dm ⁻³ .	are structural isomers of	of each other, ha
The carbo molecular followed reacted w	onyl compound formula C ₅ H ₁	rate of the reaction, if to of Y is 5 mol dm ⁻³ .  ds A, B, C, D and E oO. Only A shows optiform optically active P		of each other, hand C react with where as D and

S					
6			a de la constitución de	18 4 5 8 1	
* 1		40 1		12-2-1	
No.					
especie.	AND THE PARTY OF T	terior		hatayaana	et moderande en de en
	1		K		L
ii)	Write the reagon	ts V and W in	the boxes provided b	elow.	
. 117	The time to the same to the sa	The state of the s	a real state of the state of th		
	operation of the first state of the state of				
	٧		W the appropriate box,		
	Writing A _E , A _N , electrophilic add nucleophilic subs	titution (S _N ) or	Reaction 2		eaction 3
i)	nucleophilic subs  Reaction 1  What is the struc	titution (5 _H ) of	Cienniation (D) 1949	Re	eaction 3
i)	nucleophilic subs	titution (5 _H ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the struc	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3
i)	nucleophilic subs  Reaction 1  What is the structory NaOH(aq)	titution (S _N ) of	Reaction 2	Re	eaction 3



# දේවී බාලිකා විදහාලය - කෙළඹ DEVI BALIKA VIDYALAYA - COLOMBO

13 වන ලෝණිය පළමු වාර පරිස්ෂණය – 2017 නොවැම්බර්

Grade 13 First Term Test November 2017

රසායන විදුසාව II` Chemistry П

Part B - Essay

Answer two questions only. (Each question carries 15 marks.)

- a) i) Define Avogadro's law.
  - Derive the Avogadro's law using the ideal gas equation PV = nRT
  - b) A sample of gas X₂ was placed in a rigid container (A) with a volume of 12 dm³ at 127°C temperature and 8.314 x 105 Pa pressure.

A sample of gas Y₂ was placed in a rigid container (B) with a volume of 6 dm³ at 27°C temperature and 16.628 x 10⁵ Pa pressure.

The two containers were connected by a tube of negligible volume, and the temperatures were kept unchanged, find,

- Partial pressure of X2 in container A.
- Partial pressure of Y2 in container B.
- iii) Find the total pressure of the system.

The temperature of the above combined system was raised up to 267°C, and when a small amount of a catalyst (negligible volume) was added in to the system, gas X2 and Y2 reacted to form  $XY_a$ ,  $Y_a$  reacted completely and the final pressure of the system was 12.471 x 10⁵ Pa.

- iv) Write the balanced chemical equation using n.
- v) Calculate the total number of moles of in the combined container.
- vi) Find the value of n.
- At 127°C A₃B₄(g) reaches the following equilibrium. c)

 $A_3B_4(g) \longrightarrow A_2(g) + AB_4(g)$ 

At equilibrium, 20% of A₃B₄(g) by volume was left, and the partial pressure of A_{2(g)} was  $8.314 \times 10^{5} \text{ Nm}^{-2}$ .

- i) Find the equilibrium concentration of each species in mol dm⁻³.
- ii) Find the equilibrium constant Kc of the above equilibrium reaction at 127°C.
- iii) Using the Kc value calculated in (ii) above, find Kp of the equilibrium reaction at 127°C. (No marks would be awarded for the calculation of Kc using Kp)
- The temperature of the abvoe system is then raised to 227°C. In addition to the above ii) equilibrium, the following equilibrium was also established by the decomposition of AB4 (g)

 $AB_4(g) \longrightarrow AB_2(g) + B_2(g)$ 

A sample of A₃B₄(g) was placed in a rigid container of volume 7.2 dm³ and allowed to reach equlirbium at 227°C. 40% of the initial moles of A₃B₄(g) was left at equilibrium and the number of moles of AB2 was 20% of the initial moles of A3B4(g). The total pressure at equilibrium was found to be 4.157 x 10⁶ Pa.

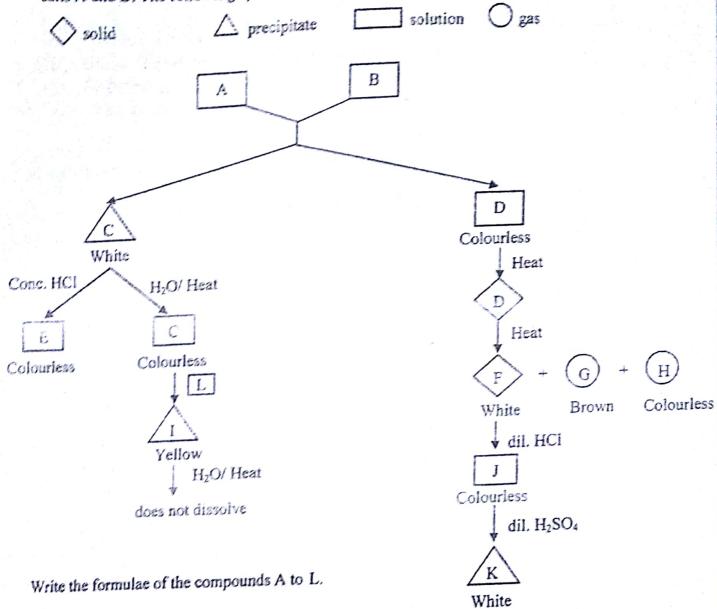
- i) Find the initial number of moles of A₃B₄(g).
- ii) Find the partial pressure of all the species at equilibrium.
- iii) Find the equilirbium constants at 25°C of the two systems at equilibrium using partial pressure

- Derive the Oswald dilution law for an equeous solution of MH3. Define the terms is it.
  - II) State the variations of the molar dissociation and the concentrations of OH (sq) and H (sq) when an aqueous solution of a weak base is diluted.
  - ii) 1) 10.0 cm³ of a 0.1 mol dm³ NaOH solution was added to 10.0 cm³ of 0.2 mol dm³ mono profit weak acid solution HA. If the pH of the resultant solution was 4.5, find the disociation constan (Ka) of the weak acid at this temperature.
    - II) Calculate the pH of 0.2 mol dm⁻³ HA solution.
    - III) 10.0 cm3 of the above weak acid. HA was taken into a titration flask and titrated against 0.1 mol dm⁻³ NaOH solution at 25°C. Calculate the equivalence point pH of the titration.
    - IV) A, B and C are three acid base indicaters and their pKIn values are given below.

Indicater	pKIn
A	3.4
В	6.1
C	8.2

State which one of the above three indicators is most suitable for the titration in (iii) above.

- V) Sketch a titration curve for the abvoe titration in (iii) above and mark the initial pH, half equivalence point pH and equivalence point pH.
- Derive an expression for the solubility product (Kge) of Ca(OH)2 b) i)
  - If the molar solubility of  $Ca(OH)_2$  of  $25^{9}C$  is  $2\times10^{-3}$  mol dm⁻³, find the  $K_{SP}$  of  $\Pi$ Ca(OH)₂
  - A 0.2 mol dm⁻³ CaCl₂ solution was saturated with Ca(OH)₂ of 25°C. Calculate the pH of the solution. State clearly any assumptions made.
  - 25.0 cm3 of a 0.05 mol dm3 MgCl2 solution was mixed with 25.0 cm3 of 0.002 mol dm3 ii) AgNO3 solution. Using a proper calculation show whether a precipitate is formed or not when the above solutions are mixed.


$$Ksp(AgCl) = 1 \times 10^{-8} \text{ mol}^2 \text{ dm}^{-6}$$

- 7) a) i) Compare the acidity of alcohols and phenols.
  - ii) I) Write the balanced equation for the reaction of CH₃ CH₂ OH with Na.
    - II) The organic product formed in (I) above, reacts with CH3 CH2 Br in two different ways and form two different products. Write the mechanisms for the formation of the two different products and state the type of mechanism for each path.
  - Using CH3 CH2OH and benzene as the only organic compounds show how you would carry out b) i) the following conversions, s

ii) 

c) Using CH₃CH₂OH as the only organic compound how would you synthesize CH₃CH = CH

a) The following reaction scheme is provided to you regarding the mixing of two aqueous solutions of salts A and B. The following symbols are used to show solid liquid and gas. (8)



b) Metal "M" forms two salts X and Y.

The following experiments and observations are made to identify aqueous solutions of salts X and Y.

and the same	Test	Observation
1	X was dissolved in dilute HCl	No gas was formed and a clear solution was
,		formed.
11.	Concentrated H ₂ SO ₄ was added to X.	A coloured gas evolved.
	Excess dilute NH ₃ was added to the solution obtained in (I)	A white precipitate was first formed and then a clear solution was obtained.
IV.	Dilute HCl was added to V	No gas was formed.
V.	NaOH (aq) was added to Y and heated with metal M.	A gas wth a pungent smell was evolved

- i) Explaining the observations identify metal M.
- Giving reasons identify anions which can be present in salt X. (ii)
- Write another experiment to confirm the anion present in X. iii)
- Giving reasons identify Y. ív)

c) The following experiments are carried out to determine the concetractions of Cr³⁺ and CrO²⁺ in solution

A volume of 25.0 cm³ of a solution containing Cr³⁻ and CrO₄²⁻ was diluted to 250.0 cm³ using distilled water, (Solution A)

#### Experiment 1

Excess BaCl₂ (aq) was added to 100 cm³ of the solution A. The dry mass of the precipitate formed was 1.012 g.

#### Experiment 2

NaOH and excess H₂O₂ was added to 25.0 cm³ of solution A. This was acidified and titrated against 0.5 mol dm⁻³ Fe²⁺ solution. The volume of Fe²⁺ (aq) required for the titration was 18.0 cm³

- Write balanced chemical equations for all the reactions taking place above.
- H) Calculate the concentrations of Cr³⁺ and CrO₄²⁻ in the solution.
- a) i) Using CH₃CH₂OH as the only organic compound, show how you would do the following conversion in minimum number of steps.

CH₃CH₂OH 
$$\longrightarrow$$
 CH₃ - C - O - C - CH₃
CH₂ CH₃

Using CH₃CH₂Br as the only organic compound show how you would synthesize the following compound.

$$CH_3$$
  
 $C = N - CH_2CH_3$   
 $CH_2CH_3$ 

Show how you would distinguish the following compounds without using the Lucas reagent.

a) 
$$CH_3CH_2CH_2-C-H$$
 and  $CH_3-C-C-H$ 

- b)  $CH_2 = CH_2$  and  $CH_3 CH = CH_2$
- b) When sample of FeCl₃ and FeCl₂ was dissolved separately in water, two hydrated species A and B are formed (Not in order)

A and B are coordination compounds of Iron with a octahedral geometry containing H₂O and Cl as ligands.

A and B were separated and their atomic compositions were determined. The compounds were further analysed using the procedures given below.

## Analysis of A

When excess AgNO₃ (aq) was added to 100.00 cm³ of a 0.015 moldm⁻³ solution of A, a white precipitate, soluble in dilute ammonia, was obtained. The dry mass of this precipitate was 4.305 g.

#### Analysis of B

When excess AgNO3 (aq) was added to 100.00 cm3 of a 0.1 mol dm3 solution of A, a white precipitate that was soluble in dilute ammonia was obtained. The dry mass of the precipitate was 4.305 g.

- Deduce the structure of hydrated complexes possible for A. i)~
- Deduce the structure of hydrated complex for B. ii)
- Out of the structures named in (i) above, find the correct structure of A. iii)
- Write the electronic configurations of metal cations in compounds A and B above. iv)
- 10) a) i) Consider the following reaction taking place at 25° C.

$$N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$$

The following thermo chemical data regarding the above reaction are provided to you.

	$\Delta H_f^{\theta} / kJ \text{ mol}^{-1}$	$S^{\theta} / Jk^{-1} mol^{-1}$
	-46	193
NH ₃ (g)	0	191.5
$N_2(g)$	0	130.6
$-H_{2}(g)$	0	

- I) Show whether is the above reaction is spontaneous or not at this temperature.
- II) Calculate the temperature at which the above reaction reaches equilibrium.
- III) State any assumptions made in the above calculation.
- Define "Enthalpy of solution" i) I)
  - Below are the data gathered for the experiment to find the enthalpy of solution of KCl at room II) temperature. (K = 39, Cl-35.5)

Mass of KCl 
$$= 3.725 g$$
  
Volume of the solution  $= 300 cm^3$   
Temperature change  $= 1.05^{\circ}C$   
Specific heat capacity of the solution  $= 4200 \text{ J kg}^{-1} \text{ k}^{-1}$ 

- Find the standard enthalpy of solution of KCl. i)
- State any assumptions made in the above calculation. ii)
- b) In order to determine the enthalpy change for the reaction, 2KHCO_{3 (s)}  $\longrightarrow$  K₂CO₃(s) + H₂O(l) + CO₂ (g) the following experiment consisting of two steps was carried out at room temperature.

#### Step I

1.98 g of solid K₂CO₃ was added to 30.00 cm³ of 2.0 mol dm⁻³ HCl acid solution. The temperature rise was 5.2° C.

$$K_2CO_3 + 2HCl (aq) \longrightarrow 2KCl_{(aq)} + H_2O_{(l)} + CO_{2(g)}$$

#### Step II

1.50 g of solid KHCO₃ was added to 30.00 cm³ of 2.0 mol dm⁻³ HCl acid solution. The temperature fall was found to be 3.7 °C.

$$KHCO_{3(s)} + HCl_{(aq)} \longrightarrow KCl_{(aq)} + H_2O_{(f)} + CO_{2(g)}$$

125

Specific heat capacity and density of HCl at constant pressure is 4Jg"k" and 1g cm" respectively.

- i). Calculate the enthalpy changes (in kJ mol-1) of the reactions in steps I and II.
- ii) Using thermochemical cycle and the values obtained in (i) above calculate the enthalpy change of the reaction.

- iii) State assumptions and experimental errors that may occur during the experiment.
- iv) State if there is a diffence between the heat change and the enthalpy change of a given reaction at a given temperature. Explain your answer.
- e) A fungicide shampoo contains Se. The experimental procedure of an experiment conducted to find the composition of Se, is given below.

45.0 cm³ (excess) of 0.02 mol dm⁻³ ammonieed. AgNO₃ was added to 5.0 cm³ of the fungicide. Under the above conditions Se forms two precipitates as follows.

$$5c_{15}$$
 AgNO₃(aq) + NH₄OH (aq)  $\rightarrow$  Ag₂Se(s) + Ag₂SeO₃(s) + NH₄NO₃(aq) + H₂O(I)

When excess HNO₅ is added to the above mixture containing the two precipitates, Ag₂Se does not dissolve whereas Ag₂SeO₃ does.

The above resultant solution was then titrated with 0.04 mol dm⁻³ KSCN solution in order to find the remaining Ag⁺ concentration. Then Ag⁺ is precipitated as, Ag⁺(aq) + SCN⁺(aq) → AgSCN(s)

The volume of KSCN required for this was 16.0 cm⁻³.

- i) Write balanced chemical equation for the reaction taking place between Ag* and Se it Ammonium hydroxide medium.
- ii) Calculate the composition of Se in the fungicide in mol dm⁻³.