

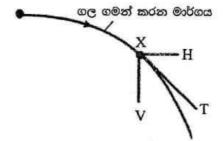
රාජකීය විදහලය - කොළඹ **07** 13 ශේණිය

අනාවරණ පරික්ෂණය - 2020 අගෝස්තු

Enu 19.08.2020/11.00 A.M-01.00 P.M

භෞතික විදනව | (g = 10 Nkg⁻¹)

කාලය : පැය 2

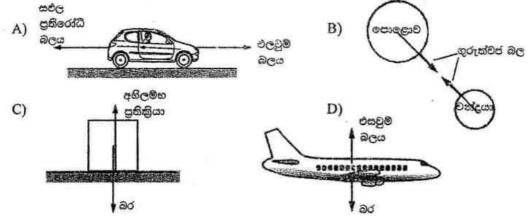

💠 සියලුම පුශ්නවලට පිළිතුරු සපයන්න.

- විද්යුත් විශව වෙනසක්, විද්යුත් ආරෝපණයකින් ගුණ කළ ගණනය කිරීමක ප්‍රතිඵලයක් ලෙස ඇති භෞතික රාශිය කුමක්ද?
 - 1) විද්යුත් ධාරාව
- 2) විද්යුත් ක්ෂේතු තීවුතාවය
- 3) විද්යුත් ශක්තිය

- 4) විද්යුත් බලය
- 5) විද්යුත් ගාමක බලය
- 2) සුළං මෝලයකින් ජනනය කළ හැකි උපරිම ක්ෂමතාවය (P), P = KpAvⁿ ලෙස දී ඇත. ρ = වාකයේ ඝනත්වය , A = සුළං පෙති මගින් කපා හරිනු ලබන සුළඟේ සඵල වර්ගඵලය, v = සුළඟේ පුවේගය, K යනු මාන රහිත නියතයකි. n හි අගය දෙනු ලබන්නේ,
 - 1)1
- 2)2
- 3)3
- 4)4

4) 5

3) කුඩා ගල් කැටයක් ති්රස්ව පුක්ෂේපණය කරන ආකාරය රූපයේ දැක්වේ. X යනු ගල් කැටය ගමන් කරන පථයේ ලක්ෂායකි. XH සහ XV යනු X හරහා අඳින ලද ති්රස් සහ සිරස් රේඛා වේ. XT යනු X හිදී අඳින ලද ස්පර්ශකයයි. X හිදී ගල් කැටය මත ඇති බල/බලයන් යොමු වී ඇති දිශා වනුයේ, (වාත පුතිරෝධය (නොසලකා හරින්න)


- 1) XV සහ XH පමණි
- 2) XV පමණි
- 3) XH පමණි

- 4) XT පමණි
- 5) XV සහ XT පමණි
- 4) X නමැති ඝන දුවා Y නම් ඝන දුවා සමග තාපජ සමතුලිතතාවයේ පවතින අතර, Y ඝන දුවා සහ Z නම් තවත් ඝන දුවායක් එකම උෂ්ණත්වයේ පවතී. X, Y සහ Z ඝන දුවා සාදා ඇති දුවා සහ ඒවායේ ස්කන්ධයන් එකිනෙකට වෙනස් වේ. පහත ප්‍‍රකාශ සලකා බලන්න.
 - A) X සහ Y දුවා ලදකටම ඇත්තේ එකම අභානේකර ශක්තියකි.
 - B) Y දුවා, Z දුවා සමග තාපජ සමතුලිකතාවයේ තිබීම අනිවාර්යය නොවේ.
 - C) X දුවා Y සහ Z සමග තාපජ ස්පර්ශයේ තැබූ විට ඒවා අතර සඵල තාප ගැලීමක් නැත.

මින් සතා වන්නේ,

- 1) A පමණි
- 2) B පමණි
- 3) C පමණි
- 4) A හා B පමණි
- 5) B හා C පමණි
- 5) නාෂ්ඨික ක්වාර්ක් සංයුතියේ වෙනස්වීම් සහ β+ ක්ෂය වීමක දී ලෙප්ටන් වීමෝචනය විස්තර කරන සමීකරණය වන්නේ,
 - down → up + positron + electron neutrino
 - 2) down → up + positron + electron antineutrino
 - 3) up → down + positron + electron neutrino
 - 4) up → down + positron + electron antineutrino
 - 5) up → down + electron + electron antineutrino

- චන්දිුකාවක් පෘථිවිය වටා භුමණය වනුගේ පෘථිවියේ කේන්දුයේ සිට චන්දිකාවට ඇති ආසන්නතුම දුර ${f R}$ සහ දුරස්කම දුර 3R වන පරිදිය. පෘථිවියට ආසන්නනම ස්ථානයේ චන්දිකාවේ චේගය වන්නේ (සියලුම පුතිරෝධයන් නොසලකා හරින්න.)
- 2) $\sqrt{\frac{GM}{2R}}$ 3) $\sqrt{\frac{GM}{6R}}$
- 4) $\sqrt{\frac{3GM}{2R}}$
- 5) $\sqrt{\frac{3GM}{R}}$
- 7) සමාන විශාලත්වයන් පවතින බල යුගල් කිහිපයක් පහත රුප සටහන් මගින් නිරූපණය කර ඇත.

ඉහත සඳහන් බල අතුරින් නිව්ටන්ගේ තුන්වන නියමය විස්කර කෙරෙන බල යුගලය දැක්වෙන රූපය / රූප සටහන් වන්නේ,

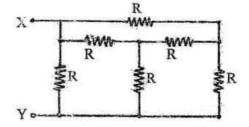
1) A පමණි

- 2) B පමණි
- 3) A සහ B පමණි

4) A, B සහ C පමණි

- 5) A, B, C සහ D සියල්ල
- තීර්යක් සහ අන්වායාම තරංග පිළිබඳ කර ඇති පහත පුකාශ සලකා බලන්න.
 - A) ඝන මාධා‍යයක මතුපිට පෘෂ්ඨය ඔස්සේ තීර්යක් කරංග සම්පේෂණය විය නොහැක.
 - B) යාන්තික තීර්යක් තරංග දුවයක් හෝ වායුවක් තුළින් සම්ජේෂණය විය නොහැක.
 - C) ධ්වති තරංග අන්වායාම වන අතර විද්යුත් චූම්භක තරංග නිර්යක් වේ. ඉහත පුකාශ අතරින් සතා වන්නේ,
 - 1) A පමණි

2) B 50es


3) C පමණි

- 4) A හා B පමණි
- 5) B හා C පමණි
- 9) එක් පුතිරෝධයක විශාලත්වය R බැගින් වූ සර්වසම පුතිරෝධ හයකින් යුත් පරිපථයක් පහත රුපයේ දැක්වේ. X සහ Y අතර සමක පුතිරෝධයේ අගය වනුයේ,

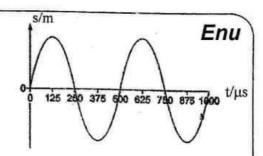
- 2) R/3
- 3) R/2

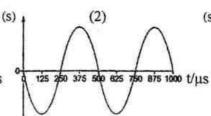
- 4)2R
- 5) 4 R

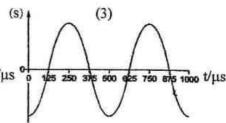
- 10) විද්යුත්ගාමක බලය 12 V වන අභාගන්තර පුතිරෝධය නොසලකා හැරිය හැකි බැටරියක් මිනිත්තු 20 ක් පමණ බාහිර විද්යුත් පුහවයක් මගින් ආරෝපණය කරනු ලැබේ. මෙම කාලය තුල බැවරිය ලබා ගත් විද්යුත් ශක්තිය 7.2 ×10⁴ J වේ. බැටරිය වෙත ගලා ගිය ආරෝපණ පුමාණය දෙනු ලබන්නේ,
- 2) 60 C
- 3) 100 C
- 4) 600 C
- 5) 6000 C

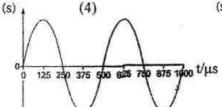
11) ස්කන්ධය m සහ සනකම h වන සර්වසම කුච්චී හතරක් ලම්සයක් මත අතුරා ඇති අයුරු රුපයේ දැක්වේ. මේවා එකමත එක තැබීමේ දී ඒවා මත කරනු ලැබූ අවම කාර්යය පුමාණය වන්නේ,

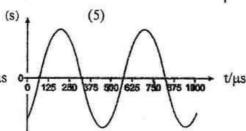
2) 6 mgh


3) 8 mgh


4) 10 mgh


5) 12 mgh


712) වායුවක් හරහා ධ්වනි තරංගයක් ගමන් කරන අවස්ථාවක දී වායු අංශුවක විස්ථාපනය(s) කාලය(t) සමග විචලනය වන ආකාර ප්‍රස්ථාරයේ පෙන්වා ඇත.
වායුව තුළ ධ්වනි තරංග ගමන් කරනු ප්‍රවේශය 330 ms⁻¹ වේ.


වායුව තුළ ධ්වනි තරංග ගමන් කරනු පුවේගය 330 ms⁻¹ වේ. ධ්වනි පුභවයේ සිට 0.165 m ඇතින් පිහිටි අංශුවක් සඳහා විස්ථාපනය(s) කාලය(t) සමග විචලනය පෙන්වා ඇති පුස්ථාරය වන්නේ.

13) 2000 Hz නියන සංඛානතයකින් ශබ්දය විමෝචනය කරන ශබ්ද විකාශන යන්තුයක් 15 m s⁻¹ නියන චේගයකින් වෘත්තාකාර පථයක ගමන් කරයි. ශබ්ද විකාශන යන්තුයට ඉතා ඇතින් සිටින නිශ්චල නිරීක්ෂකයයෙකුට වෙනස් වන සංඛානතයකින් ශබ්දය ඇසෙන අතර ඔහු ශුවනය කරන උපරිම සංඛානතය 2100 Hz වේ. වාසය තුල ධ්වනි වේගය වන්නේ,

1) 294 m s⁻¹

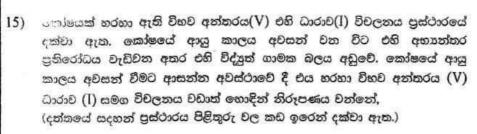
2) 315 m s⁻¹

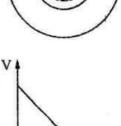
3) 324 m s⁻¹

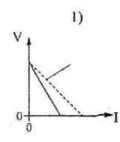
4) 330 m s⁻¹

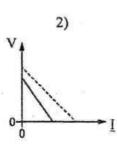
5) 340 m s⁻¹

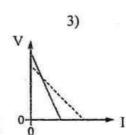
14) නලයට ලම්භකව පවතින ඒකාකාර වුම්භක ක්ෂේතුය(B), අරය a(a < b) වන වෘත්තාකාර පුදේශයක් හරහා පවතින අතර එය නියත ශීසුතාවයකින් විචලනය වේ. අරය b වන කම්බ් පුඩුව හරහා පුද්රිත විද්යුත් ගාමක බලය E වේ. අරය 2b වන කම්බ් පුඩුව හරහා පුේරිත විද්යුත් ගාමක බලය වනුයේ,

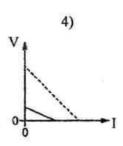

1)0

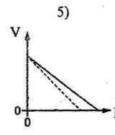

2) E/2

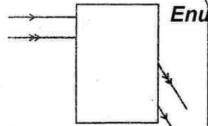

3) E


4) 2E

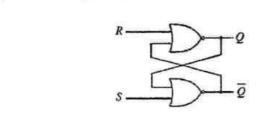

5) 4 E

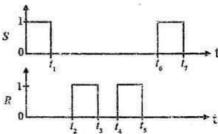




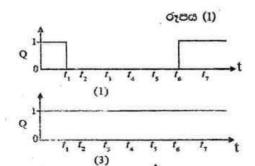


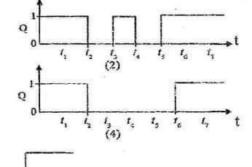
16) ඒකවර්ණ ආලෝක කි්රණ දෙකක් පුකාශ උපකරණ පද්ධතියක් තුළින් ගමන් කර ඉන් නික්මෙන ආකාරය රූපයේ පෙන්වා ඇත. පුකෘශ උපායරණ පද්ධතිය තුල අඩංගු විය හැකි උපකරණය / උපකරණ විය හැක්ලක්,



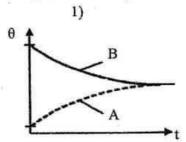

- A.) සෘජු කෝණි සමද්විපාද පිස්මය
- B) සමපාද තිකෝණි පිස්මය
- C) ව්දුරු කුට්ටියක් සහ අභිසාරී කාචය

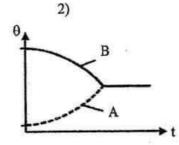
- 2) B පමණි 3) A සහ B පමණි
- 4) B සහ C පමණි
- 5) A, B සහ C සියල්ල
- 17) අරය a හා දිග l වූ කේශික නලයක් ජල පීඩන හිසකට සම්බන්ධ කළ විට නත්පරයට ගලා යන ජල පරිමාව 16 cm³ වේ. සමාන දිග හා අරය a/2 වන කේශික නලයක් එම පීඩන නිසටම සම්බන්ධ කර ඇත්නම් තත්පරයට නළය හරහා ගමන් කරන ජල පරිමාව වනුයේ,
 - 1) 16 cm3
- 2) 8 cm3
- 3) 4 cm3
- 4) 2 cm3
- 5) 1 cm³
- 18) පරිමාව නියතව තබා පරිපූර්ණ වායුවක උෂ්ණක්වය 150 K කින් ඉහල නැංවීම සඳහා 6300 J ක තාප පූමාණයක් අවශා වේ. පීඩනය නියතව තබා උෂ්ණක්වය 150 K කින් ඉහල නැංවීම සඳහා 8800 J ක තාප පුමාණයක් අවශාය. වායුවේ උෂ්ණත්වය 150 K වලින් ඉහල පැංවීමේ දී එහි අභාන්තර ශක්තිය වෙනස්වීම වන්නේ,
 - 1) 2500 J
- 2) 6300 J
- 3) 8800 J
- 4) 11300 J
- 5) 15100 J
- 19) ඉලෙක්ටුෝනයක් 100 NC⁻¹ ක නියත විද්යුත් ක්ෂේතුයක පෙන්වා ඇති X හා Y ලක්ෂා 2ක් අතර ගමන්කරයි. X සිට Y ට දුර $4~{
 m cm}$ වන අතර XY රේඛාව කෙෂ්තුය සමග 60^{0} ක කෝණයක් සාදයි. ඉලෙක්ටෝනය මත කියාකරනුයේ විද්යුත් ක්ෂේතුයෙන් යෙදෙන බලය පමණක් නම් X සිට Y දක්වා චලනය වීමේ දී ඉලෙක්ටෝනයේ සිදුවන චාලක ශක්ති වෙනස වන්නේ, ($e = 1.6 \times 10^{-19} \, \mathrm{C}$)
 - 1)-4 eV 4) + 4 eV
- 2) 2 eV $5) + 6 \, eV$
- 3) + 2 eV

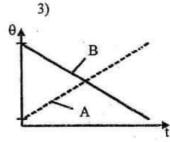


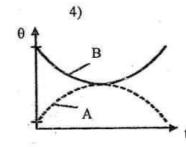

20) (1) රූපයේ දක්වෙන S - R පිළි පොළ හි R සහ S වල අගයන් (2) රූපයේ දක්වා ඇත. Q පුතිදානය කාලය සමග විචලනය වඩාත්ම හොඳින් නිරුපණය වන්නේ,

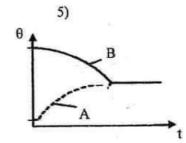
රූපය (2)

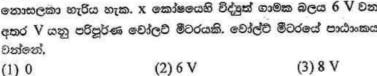





එකම දුවාලයන් සාදන ලද කම්බි 5 ක හරස්කඩ වර්ගඵල, දිග සහ තාපගතික උෂ්ණත්වයන් පහත දක්වා ඇත. (21) විශාලනම පුතිරෝධ ඇත්තේ. Enu


හරස්කඩ වර්ගඵල	දිග	උෂ්ණත්වය
1) A	2L	2T
2) A	L	T
3) 2A	2L	2T
4) 2A	L	T
5) A	2L	T

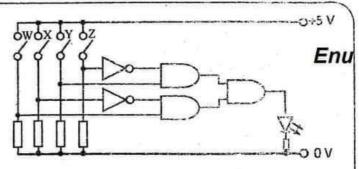

22) මුදුං තබන ලද 200 ml ධාරිතාව ඇති වීදුරු බඳුනක සිසිල් ජලය (A) පුරවා ඇත. මෙම බඳුන 200 ml උණු ජලය (B) පුමාණයක් ඇති විශාල බඳුනක ගිල්වූයේ නම් කාලයත්(t) සමග ජල සාම්පල වල උෂ්ණත්වයේ (θ) විචලනය පෙන්වන පුස්තාරය වන්නේ,



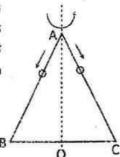
හොඳින් තාප පරිවරණය කරන ලද දණ්ඩක එක් කෙළවරක් රත් කරන අතර අනෙක් කෙලවර දියවන අයිස් තුළ තබා ඇත. දන් මෙම දණ්ඩට තාපය සපයන සීඝුතාවය වැඩිකල හොත් පහත ඒවායින් සතූූූූූ වනුයේ,

	රත්කල කෙලවරේ උෂ්ණත්වය	උෂ්ණත්වය අණුකුමණය	කාපය ගලන සීඝුතාවය
1)	වැඩිවේ.	වැඩිවේ.	වෙනස් නොවේ.
	වැඩි වේ.	වැඩි වේ.	වැඩි වේ.
	වැඩි වේ.	වෙනස් නොවේ.	වැඩි වේ.
4)	වෙනස් නොවේ.	වැඩි වේ.	වෙනස් නොවේ.
5)	වෙනස් නොවේ.	වෙනස් නොවේ.	වෙනස් නොවේ.

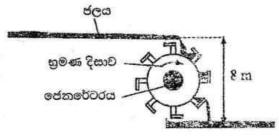
24) දී ඇති පරිපථයේ කෝෂ පද්ධති දෙකෙහි අභාගන්තර පුතිරෝධයන් නොසලකා හැරිය හැක. x කෝෂයෙහි විද්පුත් ගාමක බලය 6 V වන අතර V යනු පරිපූර්ණ වෝලව් මීවරයකි. වෝල්ට් මීවරයේ පාඨාංකය වන්නේ.



 3Ω

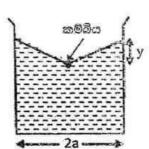

- (4) 6 V
- (5) 8 V
- 25) ආලෝක තරංග දෙකක තීවුතා අතර අනුපාතය 9 : 4 වේ. එම තරංග දෙක නිරෝධනය වීමෙන් ති්රයක් මත සෑදෙන සම්පුයුක්ත කුරංගයේ උපරිම හා අවම කීවුතා අතර අනුපාතය විය හැක්කේ,
 - 1) 5:1

- 2) 25:1
- 3) 3:2
- 4) 9:1
- 5) 25:2


- 26) W. X. Y සහ Z ස්වීච හතරක් මගින් තාර්කික ද්වාර පරිපථයක් පාලනය කරයි. LED පහන cල්වීමට කුමන ස්විච්යන් සංවෘත කළ යුතුද?
 - 1) W 200 Y
 - 2) W 800 X
 - 3). W too Z.
 - 4) X too Y
 - 5) X too Z

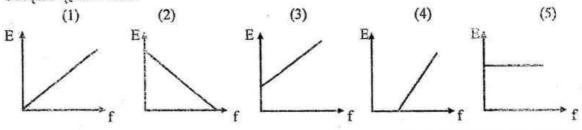
ඒකාකාර කම්බියකින් සාදන ලද සමපාද තිකෝණයක කුඩා සමාන පබළු දෙකක් A හි 27) තබා තිුමක්ණය AO යිරස් අක්ෂය වටා සුමටව භුමණය කරනු අතර පබළු දෙක එකවර නිශ්චලතාවයෙන් මුදා හරින අතර පහළට ලිස්සා යාමට ඉඩ දෙනු ලැබේ. එකක් AB දිගේ සහ අනෙක AC දිගේ පෙන්වා ඇති පරිදි ඝර්ෂණ බලපැම් වලින් තොරව පහළට ලිස්සා යන විට පද්ධතියේ නියතව පවතින භෞතික රාශිය / රාශීන් වන්නේ.

- කෝණික පුවේගය සහ යාන්තික ශක්තිය.
- 2) භුමණ අක්ෂය වටා මුළු කෝණික ගමාතාව සහ යාන්තික ශක්තිය.
- 3) හුමණ අක්ෂය වටා කෝණික පුවේගය සහ අවස්ථිතික ශූර්ණය.
- 4) භුමණ අක්ෂය වටා මුළු කෝණික ගමාතාව සහ අවස්ථිතික සූර්ණය.
- 5) යාන්තික ශක්තිය හා අවස්ථිතික සූර්ණය.
- පහත රූපයේ දක්වා ඇති ජල රෝදය මගින් විද්යුත් 23) ජනකයක් කියාත්මක කර විද්යුත් ශක්තිය නිපදවයි. ජලය ගැලිමේ ශීඝුකාවය 200 kg s⁻¹ වේ. ජෙනරේටරය මගින් 230 V ක විභව අන්තරයක් යටතේ 32 A ක ධාරාවක් සපයයි. ජල පහරේ සිදුවන චාලක ශක්ති වෙනස් වීම් නොසලකා නැරි විට ජල රෝදය සහිත පද්ධතියේ කාර්යක්ෂමතාවය දෙනු ලබන්නේ,

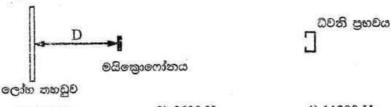

4) 46 %

- 1) 14%
- 2) 16 %

3) 23 %


5) 52 %

29) පළල 2a වන බඳුනක් දුවයකින් පුරවා ඇත. ඒකීය දිගක බර λ වන තුනී කම්බියක් දුව පෘෂ්ඨය මත සිරුවෙන් පාකල විට, දුව පෘෂ්ඨය y ගැඹුරකින් රුපයේ පරිදි අවපාතනය වී ඇත. දුවයේ පෘෂ්ඨික ආක්ති සංගුණකය වන්නේ, (y << a)

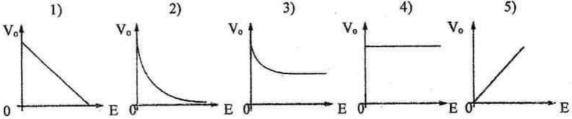


- 2) $\frac{\lambda a}{y}$ 3) $\frac{2\lambda a}{y}$

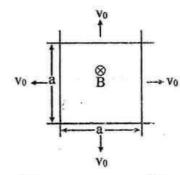
- පතිත විකිරණයේ සංඛාාසය (f) සමග පුකාශ ඉලෙක්ටුෝනයේ උපරිම චාලක ශක්තිය (E) වෙනස් වන ආකාරය 30) හොඳින්ම දැක්වෙන්නේ.

ධ්වනි තුරංගයක සංඛාාතය සෙවීම සඳහා සකසා ඇති ඇටවුමක් පහත රූපයේ දැක්වේ. ධ්වනි පුභවයෙන් **Er** 31) නිකුත් කරනු ලබන තරංගය ලෝහ තහඩුවේ වැදී පරාවර්තනය වේ. මයිකොෆෝනය තහඩුවට D දුරකින් තබා ඇති අතර D = 12 cm විට මයිකෙකු:ෆෝනය මගින් ධ්වතියේ අවම තීවුකාවයක් හඳුනා ගනී. ලෝහ කහඩුව නව දුරටත් මයිකොෆෝනයෙන් ඉවතට ුගෙන යන විට D = 15 cm දි නැවතත් ධ්වනි කීවුනාවයක අවම ලක්ෂයක් හමුවේ. පුහවයෙන් නිකුත් කරනු ලබන තරංගවල සංඛානතය විය හැක්කේ, (වාතය තුල ධවනි පුවේගය 336 m s⁻¹)

1) 56 Hz

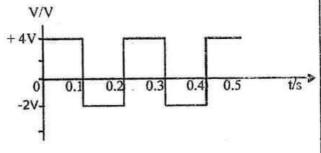

2) 112 Hz

3) 5600 Hz


4) 11200 Hz

5) 11400 Hz

සිරස්ව ඉහලට පවතින විද්යුත් ක්ෂේතු තීවුතාවය E වූ ස්ථිති විද්යුත් ක්ෂේතුයක් තුල ධන ලෙස ආරෝපිත තෙල් බිංදුවක් ${
m V}_0$ ආන්ත පුවේගයෙන් පහළට වැපේ. තෙල් බිංදුව මත වාතයෙන් ඇති කරන පුතිරෝධී බලය තෙල් බිංඳුවේ පුවේගයට අනුලෝමව සමානුපාතික වේ. E සමග V_0 හි විචලනය වඩාත්ම හොඳීන් නිරුපණය වන්නේ,



සමාන්තර දිගු සෘජු සන්නායක දෙකක් සුමට තලීය මතුපිටක් මත 33) තබා ඇත. තවත් සමාන්තර දිගු සෘජු සන්නායක දෙකක් ඒවා මතින් තබා ඇත. එවිට ඒවා පැක්තක දිග a වන සමචතුරසුයක් සාදයි. සන්නායක අඩංගු කලයට ලම්භකව ක්ෂේතු තීවුතාවය B වූ චුම්භක ක්ෂේතුයක් පවතී. දැන් සන්නායක t = 0 දී vo නියත පුවේගයකින් පිටතට චලනය කිරීමට පටන් ගනී. t කාලයකට පසු සමචතුරසුයේ ලේරිත ධාරාව දෙනු ලබන්නේ, (λ යනු සන්නායකයේ ඒකක දිගක පුතිරෝධය වේ)

1) $\frac{aBv_0}{\lambda(a+v_0t)}$ 2) $\frac{aBv_0}{2\lambda}$ 3) $\frac{Bv_0}{4\lambda}$

34) පහත දැක්වෙන පුස්ථාරයේ පෙන්වා ඇති පරිදි සමාන කාල පරතරයන් හි 4 V සිට -2 V දක්වා වෙනස් වන පුතාාවර්ත චෝල්ටීයතා සැපයුමකට 20 Ω පුතිරෝධකයක් සම්බන්ධ කර ඇත. පුතිරෝධය හරහා උත්සර්ජනය වන මධායෙන ක්ෂමතාවය වන්නේ,

1) 0.2 W

2) 0.3 W

3) 0.5 W

4) 0.8 W

5) 1.2 W

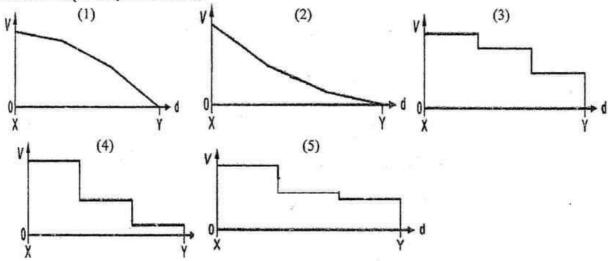

35) විද්යුත් කුමයක් මහින් දුවයක චෘෂ්පීකරණයේ විශිෂ්ව ගුප්ත තාපය සෙවීමට සිසුවෙක් අදහස් කරයි. ජලය නැටවීම සඳහා ගිල්ලුම් කාපකයක් යෞදා ගත්තා අතර ජලය නැටීමේ දී තත්පර 1 ක දී වාෂ්ප වන ජල ස්කන්ධය මැන ගනු ලැබේ. ගිල්ලුම් තාපකයේ ක්ෂමතාව 40 W සහ 80 W වන විට ජලය වාෂ්ප වන ශීඝුකාව පිළිවෙලින් 0.0393 kg s⁻¹ සහ 0.0893 kg s⁻¹ වේ. දුවයේ වාෂ්පීකරණයේ විශිෂ්ඨ ගුප්ත තාපය විය හැක්කේ, 4) 1600 J kg⁻¹ 5) 2000 J kg⁻¹

1) 400 J kg⁻¹

2) 800 J kg⁻¹

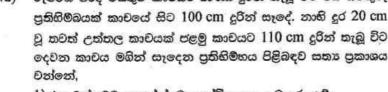
3) 1200 J kg⁻¹

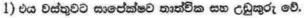
36) බංගි පැනුම් කරුවෙක් උස පාලමකින් බිමට පැනීම සඳහා හුක් නියමය පිළිපදින ප්‍රත්‍යාස්ථ කඹයක් යොදා ගනී. ගුරුත්වාකර්ෂණ විභව ශක්තිය පැනුම්කරු ලඟා වන පහළම ලක්ෂායේ සිට මනිනු ලබයි. පාලමේ මුදුනේ සිට මනිනු ලබන සිරස් විස්ථාපනය(s) සමග පැනුම්කරුගේ ගුරුත්වාකර්ෂණ විභව ශක්තියත් (A) කඹයේ ප්‍රත්‍යාස්ථ විභව ශක්තියත් (B) විචලනය වඩාත්ම භෞදින් නිරුපණය කරන ප්‍රස්ථාරය වන්නේ,

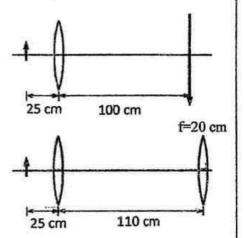

- 37) වස්තුවක් දුවයක් මත ඉපිලේ.
 - (A) වස්තුවේ ගුරුත්වකේන්දය, උත්ප්ලාවකතා කේන්දයට වඩා පහතින් පැවතිය යුතුමය.
 - (B) වස්තුවේ ගුරුත්ව කේන්දුය උත්ප්ලාවකතා කේන්දුයට වඩා ඉහලින් විය යුතුමය.
 - (C) වස්තුව සම්පූර්ණයෙන් ගිලි ඉපිලේ නම් වස්තුවේ ගුරුක්වකේන්දුය සහ උක්ප්ලාවකතා කේන්දුය සමපාත විය යුතුය.
 - (D) වස්තුව දුවයේ අර්ධ වශයෙන් හෝ පූර්ණ වශයෙන් ඉපිලේ නම් වස්තුවේ බර උඩුකුරු තෙරපුමට සමාන විය යුතුයි.

මින් අසතා වනුයේ,

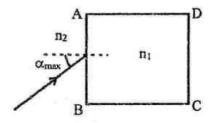
- 1) A too B
- 2) B සහ C
- 3) A, B සහ C
- 4) A , C සාහ D
- 5) A , B , C සහ D වේ

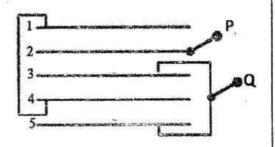

38) එකම දුවායකින් සාදා ඇති එකිනෙකට වෙනස් වූ හරස්කඩ වර්ගඵල සහිත වූ කම්බි තුනක් ශ්‍රේශිගතව සම්බන්ධ කිරීමෙන් xy සන්නායකය සාදා ඇත. සන්නායකය දිගේ (I) විද්යුත් ධාරාවක් ගලා යන විට x සිට y දක්වා කම්බියේ විභවය(V) දුර(d) සමග විචලනය වඩාත්ම හොඳින් නිරුපණය වන්නේ,




- 39) එක්තරා පුදේශයක දුර(d) සමග විද්යුත් විභවයේ(V) වෙනස් වීම පුස්ථාරයේ දක්වේ. ආරෝපිත අංශුවකට විශාලතම බලයක් අත්විදිය හැක්කේ කුමන අවස්ථාවේ දී ද?
 - 1) A
- 2) B
- 3) C
- 4) D
- 5) E

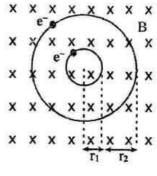
- 0 °C හි පවතින අයිස් M kg පුමාණයක් දිය වී ජලය බවට පත් වී සියලූම ජලය චාෂ්ප වන තෙක් තාපය 40) සපයනු ලැබේ. ජලයේ වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය $2 imes 10^6~\mathrm{J~kg^{-1}}$ ද , අයිස්වල විලයනයේ විශිෂ්ට ගුප්ත තාපය $4 \times 10^5~\mathrm{J~kg^{-1}}$ ද , ජලයේ විශිෂ්ට තාප ධාරිතාව $4 \times 10^3~\mathrm{J~kg^{-1}K^{-1}}$ ද නම් පද්ධතිය උරාගත් තාපයෙන් කොපමණ පතිශතියක් විභව ශක්තිය බවට පක්වේ ද?
 - 1) 29%
- 2) 43 %
- 3)71%
- 4) 86 %
- Enu 5) 100 %
- 41) එක් කෙළවරක් හුමාල කුටීරයක ද අනෙක් කෙළවර දියවන අයිස් වල ද ගිල්වා ඇති සිලින්ඩරාකාර දණ්ඩක අයිස් දිය වීමේ සීඝුතාව 0.1gs⁻¹ වේ. ඉහත දණ්ඩ වෙනුවට දිග අඩක් ද අරය දෙගුණයක් ද සහ තාප සන්නායකතාව ඉහත දණ්ඩෙහි මෙන් ¼ ක් වන දණ්ඩක් භාවිතා කළේ නම් අයිස් දියවීමේ සීසුතාව g s⁻¹ වලින්, 2) 0.2 3) 3.2 4) 1.6 5)2.21)0.1
- රුපයේ පරිදි වස්තුව කාචයට 25cm දුරින් තැබූ විට එහි යටිකුරු 42) පුතිහිම්බයක් කාචයේ සිට 100 cm දුරින් සෑදේ. නාභි දූර 20 cm වූ තවත් උත්තල කාචයක් ජළමු කාචයව 110 cm දුරින් තැබූ විට දෙවන කාචය මගින් සැදෙන පුකිහිම්භය පිළිබඳව සතා පුකාශය වන්නේ.




- 2) එය වස්තුවට සාපේක්ෂව තාත්වික සහ යටිකුරු වේ.
- 3) එය වස්තුවට සාපේක්ෂව අතාත්වික සහ යටිකුරු වේ.
- 4) එය වස්තුවට සාපේක්ෂව අතාත්වික සහ උඩුකුරු වේ.
- 5) මෙම අවස්ථාවේ දී පුතිබිම්භයක් නොසෑදේ

43) වර්තනාංකය n₁ වන ABCD වන සෘජුකෝණාසුාකාර වීදුරු කුට්ටියක් වර්තනාංකය n_2 වන ජලය තුල ගිල්වා ඇත. $(n_1 > n_2)$ රූපයේ දක්වෙන පරිදි ආලෝක කිරණයක් වීදුරු කුට්ටියේ AB පෘෂ්ඨය මත පතිත වෙයි. විදුරු කුට්ටිය තුලට අතුල්වන එම කි්රණය AD පෘෂ්ඨයේ වැදී පූර්ණ අභාගත්තර පරාවර්තනය වීමෙන් පසු CD තුලින් නිර්ගත වීමටනම්, පතන කෝණයේ උපරිම අගය α_{max} ලබා දෙනුයේ,

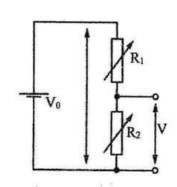
- $(1)\sin^{-1}\left(\frac{n_2}{n_1}\right) \qquad (2)\sin^{-1}\left(\frac{n_1}{n_2}\right) \qquad (3)\sin^{-1}\left(\frac{n_1^2-1}{n_2}\right)$
- $(4)\sin^{-1}\left(\sqrt{\frac{n_2^2}{n_1^2}-1}\right) \qquad (5)\sin^{-1}\left(\sqrt{\frac{n_1^2}{n_2^2}-1}\right)$
- 44) රූප සටහනේ දැක්වෙනුයේ සර්වසම ලෝහ තහඩු 5ක් එකිලනකට සමාන්තරව තබා ඇති ආකාරයයි. එක් තහඩුවක වර්ගඵලය A සහ නහඩු දෙකක් අතර පරතරය d නම්, P සහ Q අතර සමක ධාරිතාවය වන්නේ,

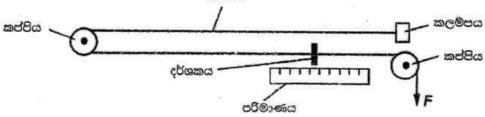


- 1) $5\frac{A \in_0}{d}$ 2) $\frac{5}{3}\frac{A \in_0}{d}$ 3) $\frac{5}{2}\frac{A \in_0}{d}$
- 4) $\frac{4}{3} \frac{A \in_0}{A}$ 5) $\frac{4A \in_0}{A}$

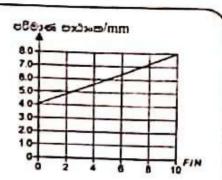
45) රූපයේ පරිදි ඉලෙක්ටුෝන දෙකක් සුාව ඝනත්වය B වන ඒකාකාර චුම්බක ක්ෂේතුයක අරයන් එකිනෙකට වෙනස් වෘත්තාකාර පථ දෙකක චලිත වේ. කක්ෂ දෙකෙහි අරයන් අතර අනුපාතය $\frac{r_1}{r_2} = \frac{1}{3}$ ක් වේ. ඒවායේ වේගයන්

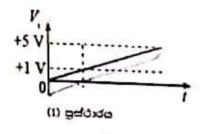
අතර අනුපාතය $\frac{v_1}{v_2}$ ලබා දෙන්නේ ,

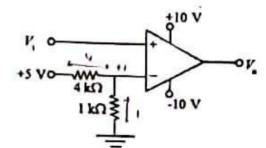

- 1) 1/9
- 2) 1/3
- 4)3
- 5)9

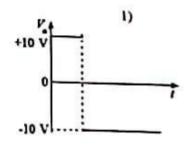

46) LMNO යනු තිරසට θ කෝණයකින් ආතත අචලව සවිකර ඇති සුමට කම්බී රාමුවකි. කම්බි රාමුව හරහා සිරස්ව ඉහලට සුාව ඝනත්වය B වූ ඒකාකාර චුම්භක ක්ෂේතුයක් පවතී. දිග l හා ස්කන්ධය m වූ PQ සන්නායක දණ්ඩක් කම්බි රාමුව දිගේ v ඒකාකාර පුවේගයකින් පහලට චලික වන විට PQ දණ්ඩෙහි ජුරිත ධාරාවේ විශාලත්වය විය හැක්කේ .

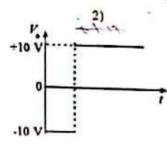
- (4) $\frac{mg}{Bl\sin\theta}$

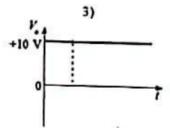

- 47) දී ඇති විභව බෙදුම් පරිපථය හා සම්බන්ධ කොට ඇති කෝෂයේ අභාන්තර පුතිරෝධය නොගිනිය හැකි තරම්ය. R1 සහ R2 විචලා පුතිරෝධ වේ. පහත පුකාශ වලින් නිවැරදි වන්නේ,
 - 1) R2 වැඩි වන විට V හි අගය අඩුවේ.
 - 2) R_1 වැඩි වන විට R_1 හා R_2 හරහා ධාරාව අඩුවන අතර V හි අගය වැඩි වේ.
 - 3) R₁ වැඩි වන විට V හි අගය අඩු වේ.
 - 4) R2 වැඩි වන විට R1 හා R2 හරහා ධාරාව අඩුවන අතර V අඩුවේ.
 - 5) R2 වැඩි වන විට R1 හරහා ධාරාව වැඩි වේ.
- 48) ආනත කන්දක ගමන් කරන දුම්රියක් මිනිසුන් 200 ක් රැගෙන යන අතර එක් මිනිසෙකුගේ සාමානා ස්කන්ධය 70 kg වේ. කන්දේ ආනතිය තිරසට 30° ක් සහ දුමරියේ නියත වේගය 6 ms⁻¹ වේ. දුමරියේ ස්කන්ධය 80 000 kg වන අතර මුළු බර (දුම්රිය සහ මිනිසුන්ගේ) දරීම සඳහා එන්ජිමෙන් ලැබෙන බලයෙන් 40% ක් වැය වේ නම් එන්ජිමේ ක්ෂමතාවය වන්නේ,
 - 1) 1 MW
- 2) 2.8 MW
- 3) 7.05 MW
- 4) 14.05 MW
- 5) 16.05 MW
- 49) යං මාපාංකය සෙවීමට යොදා ගන්නා ලද පරීක්ෂණයක දී විශ්කම්භය 0.25 mm වූ ලෝහ කම්බියක් රූපයේ පරිදි කලම්ප කරනු ලැබේ. කම්බිය

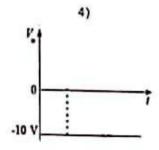

කලම්ප කර ඇති කම්බිය රූපයේ පරිදි සුමට කප්පි දෙකක් මනින් යවා ඇති අතර කම්බියේ කෙළවරට F භාරයක් ගැට ගසා ඇත. ආරම්භයේ දී කම්බියට සවිකර ඇති දර්ශකය හා කලම්පය අතර දිග 3.0 m වේ.

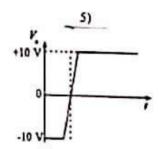

පරිමාණ පාඨාංකය නාශ්ය සමග විවලනය වන අයුරු පුස්තාරයේ දක්වා ඇත පල්කයේ යා මාපාංකය වන්නේ. (n=3)

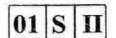

- 1) 1.0 × 1010 Pa
- 2) 1.6 × 10¹⁰ Pa
- 3) 3.2 × 1010 Pa
- 4) 1.6 × 1011 Pa
- 5) 3.2 × 1011 Pa




50) රූපයේ දක්වා ඇති පරිපථයේ අපර්ත නොවණ පුදානය (V_I) වෙත (I) පුස්ථාරයේ පරිදි කාලය සමග විචලනය වන චෝල්ටියතාවයක් ලබා දුක් විව කාරකාස්මක වර්ධකයේ පුතිදාන චෝලටියතාවය (V₀) කාලය (I) සමග විවලනයවීම වඩාක්ම කොඳින් නිරුපණය වන්නේ.







රාජකීය විදනලය - කොළඹ 07

13 ලේණිය

අනාවරණ පරික්ෂණය - 2020 අගෝස්තු භෞතික විදහව II

Enu

2020.08.19/07.30 A.M.-10.40 A.M

පැය තුනයි Three hours අමතර කියවීම් කාලය — මිනිත්තු 10 යි Additional Reading Time — 10 minutes

අමතර කියවම කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේ දී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදා ගන්න.

විභාග	අංකය	:	
-------	------	---	--

පන්තිය	:	
	•	************************

වැදගත්

- මෙම පුශ්න පකුය පිටු 17 කින් යුක්ත වේ.
- මෙම ප්‍රශ්න පත්‍රය A හා B යන කොටස් දෙකකින් යුක්ත වේ. කොටස් දෙකට ම නියමිත කාලය පැය 3 යි
- ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.

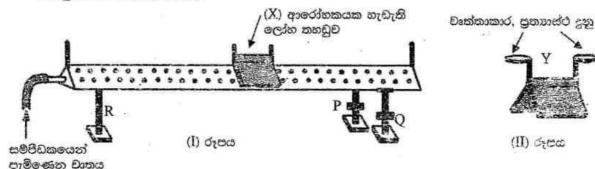
A කොටස - වසුහනත රචනා

නොවන බවද සලකන්න.

(පිටු 08 කි) සියලුම පුශ්තවලට පිළිතුරු මෙම පතුයේම සපයන්න. ඔබේ පිළිතුරු පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතුය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බවද දීර්ඝ පිළිතුරු බලාපොරොත්තු

B කොටස - රචනා

(පිටු 09 කි)
මෙම කොටස පුශ්න හයකින් සමන්විත
වේ. සම්පූර්ණ පුශ්න පතුයට නියමිත
කාලය අවසන් වූ පසු "A" සහ "B"
කොටස් එක් පිළිතුරු පතුයක් වන සේ
"A" කොටස උඩින් තිබෙන පරිදි
අමුණා, විභාග ශාලාධීපතිට භාර
දෙන්න. පුශ්න පතුයේ B කොටස
පමණක් විභාග ශාලාවෙන් පිටතට


 $g = 10 \text{ Nkg}^{-1}$

කාටස	පුශ්න අංකය	ලකුණු
	1	
×	2	
A	3	
	4	
	5	
	6	
	7	
В	8	
	9(A)	
	9(B)	
	10(A)	
	10(B)	

අවස	ාන ලකුණු
ඉලක්කමින්	
අකුරෙන්	

සියලුම පුශ්නවලට පිළිතුරු සපයන්න.

- 1) සණත්වය ρ වන වංකය, හරස්කඩ කේතුඵලය A වන හැසින්නකින්(nozzle) v වේගයෙන් සිරස්ව ඉහලට විදිල ලබයි.
 - a) , තත්පර එකක දී නැසින්නෙන් පිටවන වායු ස්කන්ධය කොපමණ ද?
 - b) නිරස් පෘෂ්ඨයක් මත වූ එවැනි සර්වසම සිදුරු n සංඛාහවක් තුලින් ඉහත v ඓගයෙන්ම සිරස්ව වානය පිටකරනු ලබන්නේ යැයි සිතන්න. ඒකාකාර ලෝහ කහඩුවක් මෙම වායු පුවාහය මත ති්රස්ව සමතුලිතව තබා ඇත්තේ වානය නහඩුවෙහි යට පෘෂ්ඨයේ ගැටීමෙන් ඇතිවන බලය හේතුවෙනි. තහඩුවෙහි ගැටීමෙන් පසු වානය සැම දිශාවකට ති්රස්ව නියත වේගයෙන් ගමන් කරන්නේ ගැයි උපකල්පනය කර තහඩුවෙහි ස්කන්ධය m සඳහා පුකාශනයක් A, v, p හා n ඇසුරින් ලබා ගන්න.
 - c) රේඛීය වායු පථය යනු (I) රූපයේ පරිදි සර්ෂණයෙන් තොර අවකාශයක් ඇති කරන උපකරණයකි. උපකරණය තුලට සම්පීඩකයක් මගින් වාතය ඇතුළු කරන අතර එම වාතය නලයෙහි ඉහල ආනත පෘෂ්ඨ දෙක මත ඇති සිදුරු තුලින් ඒකාකාරව පිටවේ. මෙම වාත පුවාහය මත ආරෝහකයක හැඩැති (^) ලෝන තහඩුවක් (X) පා කල හැකිය.

උපකරණය එක් අවල පාදයක් (R) හා කර කැවීමෙන් උස් පහත් කල හැකි P,Q ඉස්කුරුප්පු පාද දෙකක් මත නංවා ඇත.

(i) P, Q ඉස්කුරුප්පු සහ ∧ හැඩැති ලෝග තහඩුව පමණක් භාවිත කර පථය ති්රස් කරනුයේ කෙසේද?

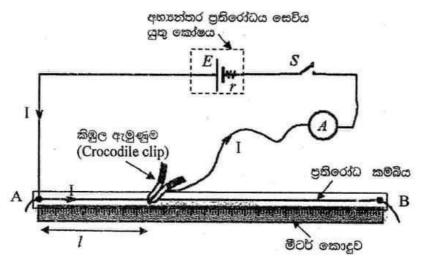
		-0
(ii)	නිව්ටන්ගේ පලමු නියමය සහාථ කිරීමට ඉහත සැකැස්ම යොදා ගන්නේ ල	කසේද?

d)	X ආරෝහකයේ ඉහල දෙකෙලවරට වෘත්තාකාර, පුතාහස්ථ දුනු දෙකක් (II) රූපයේ පරිදි සවිකරනු ලැබේ. දුන් එය පථය මත තබා නිසලව ඇති දුනු සවිකරන ලද තවත් එවැනිම Y නමැති ආරෝහකයක ගැටෙන පරිදි වේගයක් දෙනු ලැබේ. X හා Y අතර ගැටුම පුතාහස්ථ නම් ගැටුමෙන් පසු ඒවායේ චලිත ස්වභාවයන් කෙසේ විය යුතුද?
	Enu
e)	Y හි ස්කන්ධ X හි ස්කන්ධයට වඩා වැඩිනම් ගැටුමෙන් පසු ඒවායේ චලිත ස්වභාවයන් කෙසේ විය යුතු ද?
	N. C.
f)	දැන් X හා Y ට සම්බන්ධ දුනු ඉවත් කර X හි ඉදිරි මුහුණතෙහි ස්ටිකරයක් සවිකරනු ලැබේ. දැන් X,
1.5% E	නිසලව ඇති සර්වසම .Y වෙත v වේගයෙන් පුක්ෂේපණය කරනු ලැබේ.
	i) X හා Y සර්වසම නම් හා ගැටුමෙන් පසු ඒවා සංයුක්ක වේ නම් සංයුක්කයේ ආරම්භක පුචේගය කුමක් විය යුතුද?
	૦૦૦ સુવૃત્.
	ii) ඉහත කියාවලියේ දී පද්ධතියේ මුළු යාන්තික ශක්තිය සංස්ථිකව පවතීදයි හේතු සහිතව පෙන්වා දෙන්න.
	(සැ.යු. ආලෝක සංචේදී පරිපථයක් හා ආසන්ත මිලි තත්පරයට චේලාව කියවිය හැකි සංඛාහංක ඹරලෝසුවක් මගින් ආරෝහකයට නිශ්චිත දුරක් යාමට ගතවන කාලය ඉතා නිවැරදීව මැනිය හැකිය.)
g)	දන් X හි දුනු ඉවත් කර එකිනෙකෙහි දුනු නියනය K වන සර්වසම සැහැල්ලු හෙලික්සීය දුනු දෙකක් X හි ඉහළ දෙකෙළවරට යා කර ඒවායෙහි නිදහස් අගු උපකරණයේ දෙකෙළවරට (III) රූපයේ පරිදි යා කරනු
	ලැබේ. දන් X ආරෝහකය පථය මත තිරස් සරල අනුවර්තීය චලිතයක යොදවනු ලැබේ. X හි ස්කන්ධය m නම් දෝලනයේ ආවර්ත කාලය T සඳහා පුකාශනයක් ලියා දක්වන්න.
	නම දොලනයේ ආවරත කාලය 1 සඳහා පුකාශනයක් ලයා දක්වන්න.
	හෙලික්සීය දුනු X
	(III) Ozea
h)	සංවෘත කුටීරයක ඇති විදුලි මෝටරයක් මගින් කිුියාත්මක වන සම්පීඩකය මගින් වාතය සපයනු ලැබේ.
	නියත වේගයෙන් වාසය පිටකරන නමුත් දිගු වේලාවක් උපකරණය කියාකරවීමේ දී ආරෝහක පථයේ පෘෂ්ඨයේ ගැටීමට පෙළඹේ. මෙයට හේතුව කුමක් ද?

පාසල් විදයාගාරයක මිශුණ කුමයෙන් ලෝහ බෝල වල විශිෂ්ඨතාප ධාරිතාවය සෙවීම සඳහා සිසුවෙකු විසින් ඉයාදා ගනු ලබන උපකරණ සැකැස්මත් රූපයේ දැක්වේ. Enι උෂ්ණත්වමානය(P) මන්තය(Q) ජවලන නලය ලෝහ බෝල ජලය සහිත බීකරය (1) රූපය (2) රුපය 1 රූපයේ පරිදි ලෝහ බෝල යෙදු ජ්වලන නලය ජලතාපකය මගින් 100 °C දක්වා රත් කරනු ලැබේ. රත් වූ ලෝහ බෝල (2) රූපයේ දක්වා ඇති කැලරිම්ටරය තුළ වූ ජලය සමග මිශු කර ගනු ලැබේ. ජ්වලන නලය තුළ ඇති ලෝහ බෝල 100 °C උෂ්ණත්වයට පත්ව ඇති බව තහවුරු කර ගන්නේ a) i) මකමස් ද? ලෝහ බෝල දමීම සඳහා ජීවලන නලය වෙනුවට ලෝහ වලින් තැනූ නලයක් යොදා ගැනීම යෝගා වේ යැයි සිසුවෙක් පවසයි. මෙය භාවිතා කිරීමේ දී මුහුණ දීමට සිදුවන පුායෝගික ගැටලුවක් සඳහන් කරන්න. මෙම පරීක්ෂණය සඳහා අවශා අනෙකුත් අයිතම මොනවාද? 2), 3) 1) iv) රත් වූ ලෝහ බෝල කැලරිමීටරය තුල වූ ජලයට එකතු කිරීමේ දී සැලකිලිමක් වීය යුතු කරුණු මොනවාද? 1) 2) ඉහත පරීක්ෂණයේ දී සිසුවා විසින් ලබාගත යුතු මිනුම අනුපිළිවෙලින් දක්වන්න. b) i) 2) 4)

ලබාගත් මිනුම් වලට අදාල පාඨාංක පිළිවෙලින් පහත දක්වා ඇත. ඒවායේ ඒකක සම්මත ඒකක වේ.

මිනුම	පාඨාංකය
(1)	100 × 10 ⁻³
(2)	220 × 10 ⁻³
(3)	30
(4)	40
(5)	720 ×10 ⁻³

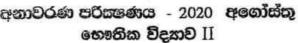

Enu

	iii)	ජලයේ වි.තා.ධා. $4200~\mathrm{J~kg^{-1}~K^{-1}}$, කැලරි මීටරයේ ව්.තා.ධා. $420~\mathrm{J~kg^{-1}~K^{-1}}$ වේ. එමගින් ලෝහයේ ව්.තා.ධා. ගණනය කරන්න.
		· · · · · · · · · · · · · · · · · · ·
	-	······································
c)		වේ. තා. ධා. සොයන ලද ලෝහ බෝල සමග ඉහත කැලරිමීටරය තවත් දුවයක වී. තා. ධා. සෙවීමට දා ගන්නා ල්දී. $100~^{\circ}\mathrm{C}$ උෂ්ණත්වයට රත්කරන ලද ලෝහ බෝල දුවය සමග මිශු කළ විට දුවයේ
		ාන උපරිම උෂ්ණත්වය 45 °C දක්වා ඉහල යන ලදී.
	දුවය	සමග කැලරිමීටරයේ ස්කන්ධය = 252g
	දුවලැ	ස් වි. කා. ධා සොයන්න.
d)	ඉහත	ලෝහ බෝල රක් කිරීම සඳහා 1 රූපයේ සඳහන් ඇටවුම වෙනුවට, ඒවා ජල බඳුනක ගිල්වා අදාල තේවයට රත්කර ගතහොත් පරීක්ෂණයේ දී මතුවිය හැකි ගැටලු දෙකක් සඳහන් කරන්න.
	1)	
	2)	
e)		ායක වි.තා.ධා. සෙවීමට මිගුණ කුමය යොදාගන්නා පරීක්ෂණයක දී කැලරි මීටරයට යොදන ජලය වට පොල්තෙල් භාවිතා කිරීම වාසිදායකද? නැතහොත් අවාසිදායක ද? පිළිතුර සාධාරණීකරණය න.
ධ්ව ධ්ව	නිමා ප නිමා ප	ාය භාවිතයෙන් ඇදි කම්බියක සංඛාහතය හා කම්පන දිග අතර සම්බන්ධතාව සොයා බැලීමට ාය, සරසුල් කට්ටලය, මීටර් රූල, පඩි කට්ටලය සහ සැහැල්ලු ඩාඩාදාසි ආරෝහකයක් ඔබට සපයා ඇත.
a)	i)	ධ්වනිමාන කම්බිය පෙලීමෙන් ස්වරයක්, ඇසෙන විට හටගනු ලබන තරංග ආකාර නම් කරන්න.
		l. කම්බිය මත :
		2. චාතයේ :

3)

	ii)	දී ඇති සරසුල් කට්ටලයෙන් අඩුම සංඛාාතය හා වැඩීම සංඛාාතය ඇති සරසුල් තෝරා ගැනීමට ඔබට නියමව ඇත. භෞතික මාන පමණක් සැලකිල්ලට ගෙන එම සරසුල් තෝරා ගන්නේ කෙසේද? Enu
	iii)	දී ඇති සියලුම සරසුල් සඳහා මෙම ධ්වනිමාන කම්බියෙන් අනුනාද දිගවල් ලබා ගත හැකි දැයි ස්ථීර
	,	කර ගන්නේ කෙසේද?
N E	iv)	iii) කොටසට අනුව දී ඇති සියලුම සරසුල් සඳහා අනුනාද දිග ලබා ගත නොහැකි ඒෙ නම් ඔබ පරීක්ණය සැකැස්මෙහි සිදු කළ යුතු / කළ හැකි වෙනස්කම් සඳහන් කරන්න.
e e	v)	සංඛාාතය වැඩිම සරසුල සඳහා මූලික කානය සඳහා අනුනාද දිග ලබා ගැනීම සිදු කරන ආකාරය කෙටියෙන් පියවර වශයෙන් ඉදිරිපත් කරන්න.
	15 15	
<i>b</i>)		
4)		.4 B
		M /kg
		රුපයේ දැක්වෙන ආකාරයට M kg භාරයක් යෙදීමෙන් ධ්වනිමාන කම්බිය ආතතියකට ලක් කර ඇත. එමගින් කම්බියේ ඇති වන ආතතිය 18.75N (Mg) ලෙස සලකන්න.
	i)	B සේතුව හා කප්පිය අතර ගන්තු කොටසේ ආකතිය භාරය නිසා ඇති වන ඉහත අගයට සමාන
	,	නොවීම සිදුවිස හැකිය. මෙවැනි දෝෂයක් මග හැරවීමට ගත හැකි කිුිිියා මාර්ග දෙකක් ලියා දක්වන්න.
		£
	ii)	තත්තුවේ ආනතිය T ද හරස්කඩ විශ්කම්භය d ද ඝනත්වය ρ ද සංඛාහතය f වන සරසුලක මූලික අනුනාද දිග l ද තම f හි අගය සඳහා පුකාශණයක් ලියා දක්වන්න.
		dend de sé era se dans méns demonances Ces émossos.

- iii) ස්වායත්ත හා පරායත්ත වීචලායන් වෙන් වන ලෙස ඉහත ii) හි පුකාශය නැවත සකස් කර ලැබිය හැකි පුස්ථාරය පහත අක්ෂ යුගලය මත ඇඳ දක්වන්න. අක්ෂ පැහැදිලිව නම් කරන්න. **Enu**
 - iv) b)iii) හි පුස්ථාරයේ අනුකුමණය 250 ms ලෙස ලැබේ යැයි ද කම්බියේ විශ්කම්භය 0.1 mm ද වේ තම් එම කම්බියේ ඝනත්වය (ρ) ගණනය කරන්න. (π = 3 ලෙස සලක්න්න)
- v) ඉහත iii) හි පුස්තාරය ධීවතිමාන කම්බිය කුමාංකනය කිරීමට යොදාගත්තේ යැයි සලකන්න. නොදන්න සංඛාාත ඇති සරසුල් දෙකක් සඳහා අනුනාද දිග දෙකක් ලබා ගත්විට එම දිගවල් වල අන්තරය විශාල සංඛාාතය ඇති සරසුලෙහි අනුනාද දිගට දරණ අනුපාතය 0.2 ක් වී නම් කුඩා සංඛාාතය ඇති සරසුලේ සංඛාාතය 500 Hz වන විට අනෙක් සරසුලෙහි සංඛාාතය සොයන්න.
- කෝෂයක අභාපන්තර ප්‍රතිරෝධය සෙවීමට සැලසුම් කරන ලද පරිපථයක් පහත දැක්වේ.



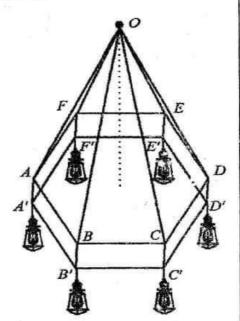
අභාගන්තර පුතිරෝධය සෙවිය යුතු කෝෂය E ලෙස දක්වා ඇත. E යනු එම කෝෂයේ විද්යුත් ගාමක බලය වන අතර එහි අභාගන්තර පුතිරෝධය σ වේ. (A) ඇමීවරයක් වන අතර එහි අභාගන්තර පුතිරෝධය දොසලකා හැරිය හැකි තරම් කුඩා වේ. σ යනු වකන යතුරකි. AB පුතිරෝධ කම්බියේ හරස්කඩ විෂ්කම්භය σ ද පුගිරෝධකතාවය σ ද වේ. කිඹුල ඇමුණුම මගින් AB පුතිරෝධ කම්බියේ σ දිගක් පරිපථයට සම්බන්ධ කර ඇතිවිට පරිපථය තුළින් σ ධාරාවක් ගලා යයි.

a)	සංවෘත පරිපථයක් සඳහා ඉදිරිපත් කර ඇති කර්චොෆ්ගේ දෙවන නියමය පුකාශනයක් ලෙස ලියා එහි ඇති සියලුම පද හඳුන්වන්න.
b)	(A) ඇමිටරයෙහි අගු (+) හා (-) ලෙස ඉහත රූපය මත සලකුණු කරන්න.
c)	${ m AB}$ කම්බියේ l දිගක පුතිරෝධය (R) සඳහා පුකාශනයක් $ ho, l$ හා ${ m d}$ ඇසුරෙන් ගොඩනගන්න.
d)	ඉහත (a) හි සඳහන් නියමය යොදා ගනිමින් E, r, $ ho$, d, I හා l අතර සම්බන්ධතාවයක් ගොඩනගන්න.
- ~	* 0.800 mdo.80 ma.d 0.00 and 0.00 md.d 0.00 md
6)	් සෙවීමට පුස්තාරික කුමයක් යොදා ගැනීමට අපේක්ෂිතය. විචලායන් නිවැරදිව හඳුනා ගනිමින් මේ සඳහා සුදුසු වන පරිදි ඉහත (d) හි පුකාශනය නැවත සකසන්න.
0	
1)	ස්වායාක්ත හා පරායක්ත විවලනයන් හඳුන්වන්න.
	ත්වයාක්ත විචලාය :
g)	පරීක්ෂණය සඳහා අපේක්ෂිත පුස්ථාරය පහත අක්ෂ පද්ධතියෙහි ඇඳ ඒකක සහිතව අක්ෂ නම් කරන්න.
h) පුස්ථාරයේ අනුකුමණය (m) = 1 ද අන්තෘඛණ්ඩය (C) = 2 ද වේ. (මෙම අගයන් SI ඒකක වලින් දක්වා
100	ආත.) $\frac{C}{m}$ අනුපාතය ඒකක සහිතව සොයන්න.
i)	AB කම්බියේ $\rho = 2.25 \times 10^{-6} \ \Omega m$ ද $d = 1.5 \times 10^{-3} \ m$ ද වේ නම් කෝෂයේ අභාවෙත්තර පුතිරෝධය (r) සොයන්න. $(\pi = 3$ ලෙස ගන්න.)
j)	ඉහත කෝෂය සමග තවත් එවැතිම කෝෂ 2ක් සමාන්තරගතව සවිකර පරීක්ෂණය සිදු කළහොත් ලැබීමට අපේක්ෂිත පුස්තාරය ඉහත අක්ෂ පද්ධතියෙහිම ඇඳ එය X ලෙස නම් කරන්න. ***

රාජකීය විදහලය - කොළඹ 07 13 ශූේණිය

Enu

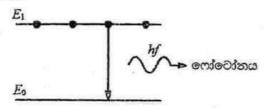
B කොටස - රචනා


 $g = 10 \text{ N kg}^{-1}$

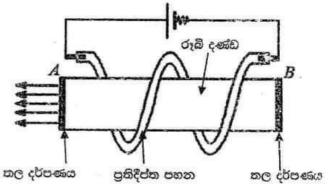
- පුශ්න 4 කට පමණක් පිළිතුරු සපයන්න.
- a) i) බල 2ක් පමණක් යටතේ වස්තුවක් සමතුලිත වීමට සපුරාලිය යුතු අවශාතා සඳහන් කරන්න.
 - ii) මෙහි දැක්වෙන්නේ නිවසක කාමරයේ එල්ලා ඇති පහන් ආවරණයක් සහිත විදුලි පහනකි. එය එල්ලා ඇති ඒකාකාර රැහැනේ (wire) දිග 50 cm වන අතර ස්කන්ධය 20 g වේ. ආවරණය සහිත සෙසු කොටස්වල මුළු ස්කන්ධය 80 g වේ. රැහැනේ ඉහල කෙළවරේ හා පහල කෙළවරේ ආතතිය සොයන්න.

රැහැන (wire)

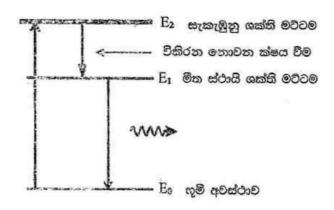
- iii) රැහැනේ පහල කෙළවරේ සිට ඉහල කෙලවර දක්වා දුර අනුව ආතතිය වීචලනය දක්වන පුස්ථාරය අදින්න.
- iv) පුස්ථාරය ඇසුරින් ඉහල කෙලවරේ සිට 20 cm දුරින් ආකතිය සොයන්න.
- b) නිවසක අලංකාරය වැඩි කිරීමට බොහෝ දෙනෙක් නිවසේ නොයෙක් හැඩැති බල්බ රාගියකින් ආලින්දයේ චිත්තාකර්ෂණීය විවිධ හැඩතල ඇති විදුලි පහන් එල්ලනු ලැබේ. එවැනි විදුලි පහතක් මෙම රූපයෙන් දැක්වේ. මෙහි ABCDEF හා A¹B¹C¹D¹E¹F¹ යනු පැත්තක දිග 30 cm වන සවිධි ෂඩාසු 2ක් වන අතර ඒවා 10 cm බැගින් දිග සිරස් කම්බි 6 කින් සම්බන්ධ කර ඇත. ෂඩාසු හා සිරස් කම්බි l gcm⁻¹ බැගින් වන කම්බි වලින් සාදා ඇත. A, B, C, D, E හා F ශීර්ෂ වලට සම්බන්ධ කර ඇති 50 cm බැගින් දි**ාැති ආනත කම්බිවල ස්කන්ධ** නොගෙනිය හැකි තරම් කුඩා වේ. ඒවායේ කෙළවරවල් 0 ලක්ෂායට ගැට ගසා ඇත. A¹, B¹, C¹, D¹, E¹, හා F¹ යන ලක්ෂා වලින් ස්කන්ධයන් 50 g බැගින් වන ආවරණ සහිත බල්බ 6ක් එල්ලා ඇත.



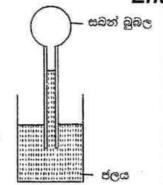
- OA කම්බිය සිරසට ආනත වන කෝණය සොයන්න. i)
- ii) OA කම්බියේ ආතතිය සොයන්න.
- එල්ලා ඇති ආනත කම්බී නිසා පමණක් ABCDEF ඩොසුයේ බාහුවක් මත බාහුව දිගේ යෙදෙන iii) තෙරපුම් බලය සොයන්න.
- $A^{l}B^{l}C^{l}D^{l}E^{l}F^{l}$ ෂඩසුයේ බාහුවක් මත බාහුව දිගේ යෙදෙන බලය කොපමණ ද? iv)
- එල්ලා ඇති ආනත කම්බි එකට එක්කර O ට පහලින් ගැවගැසු විට කම්බියක ආතතිය වැඩි වන්ගෝ V) ඇයි දැයි පහදන්න.
- ආනත කම්බියකට දැරිය හැකි උපරිම ආතතිය $1.2\sqrt{2}$ N නම් ඉහත (iv) හි ආකාරයට ගැව ගැසිය vi) හැකි ලක්ෂපයට O හි සිට දුර ආසන්න cm ට සොයන්න. ($\sqrt{2}$ = 1.4)
- vii) ඉහත (v) හි සදහන් ආකාරයට ගැට ගැසීමක් කර නැති මෙම උපකරණය භුමණය වන පරිදි O හිදී හුමණ තැටීයකට සම්බන්ධ කර ඇතැයි සිතන්න. ඉහල ෂඩාසුයේ තිරස් බාහු මත යෙදුන තෙරපුම් බලය ආතති බලයකට නුවමාරුවීම ආරම්භ වන කෝණික පුවේගය සොයන්න.


විද්යුත් වුම්භාක කරංග අතුරින් බහුලව භාවිතයට ගන්නා වැදගත් තරංග වර්ගයක් ලෙස ලේසර් (Laser) කරංග හැඳින්විය හැක. සාමානා ආලෝකය සමග සැසඳීමේ දී ලේසර් කිරණ වල ප්‍රධාන වෙනස්කම් කිහිපයක් පවතී. ලේසර් කරංග නිප්‍රවීමේ දී බාහිර ශක්ති ප්‍රභවයක් මගින් මාධායෙ සැකැඹුණු තත්වයට පත් කර ඉන්පසු උත්තේජික විමේවනයක් (Stimulated Emission) මගින් ඉහල ශක්ති තත්වයක ඇති ඉලෙක්ටෝන පහල ශක්ති මට්ටමකට පත් කරයි. එම ශක්ති අන්තරයට සමාන ශක්තියක් ඇති ෆෝටෝන නිකුත් වන අතර එම ෆෝටෝන නව දුරටත් ප්‍රකාශ අනුනාදයට ලක් වීම මගින් ලේසර් ෆෝටෝන සණත්වය වැඩි කර ගනී. මෙහිදී සැකඹීමට ලක් කරන මාධාය වෙනස් කිරීමෙන් විවිධ තරංග ආයාම සහිත ලේසර් ෆෝටෝන වර්ග නිර්මාණය කර ගත හැක.

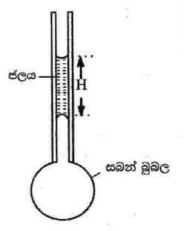
Enu


- සාමාන‍ය දෘෂ‍ය අාලෝකය සහ ලේසර් විකිරණ අතර ප්‍රධාන වෙනස්කම් දෙකක් ඉදිරිපත් කරන්න.
- සුදුසු මාධායක් භාවිතයෙන් ලේසර් තරංග නිපදවීමේ දී එම මාධාය සතු විශේෂිත ලක්ෂණ දෙකක් දක්වන්න.
- c) පහත දැක්වෙන්නේ ප්‍රධාන වශයෙන් දෘෂ‍‍ය ආලෝකය වීමෝචනය කරන තාරකාවක (සූර්යයා වැනි) ඉහල ශක්ති මට්ටමක සිට පහල ශක්ති මට්ටමකට ඉලෙක්ටුෝන පතනය වීමෙන් දෘෂ‍ය ආලෝක ෆෝටෝන වීමෝචනය වන අවස්ථාවකි.

- i) මෙම දෘෂ‍‍‍‍ අාලෝකය ඇති වීමේ කියාව පදාර්ථ හා විද්පුත් චුම්භක තරංග අතර සම්බන්ධතාවයේ කුමන නමකින් හඳුන්වයි ද?
- ii) ආලෝකයේ පුවේගය $C=3\times 10^8\,\mathrm{ms^{-1}}$ ද ප්ලාන්ක් නියතය $h=6.6\times 10^{-34}\mathrm{Js}$ ද යැයි සලකා $600\,\mathrm{nm}$ තරංග ආයාමයෙන් යුතු ෆෝටෝන නිකුත් වන විට ඉලෙක්ටෝනයක් මගින් සිදුවන ශක්ති වීමෝවනය කොපමණ ද?
- d) 1960 වර්ෂයේ දී මයිමාන් විසින් නිෂ්පාදනය කරන ලද පළමු ලේසර් මාධාපය වන්නේ රූබි දණ්ඩකි (Ruby Rod) මාධාප උත්තේජිත වීමෝචනයට ලක් කිරීමට පුතිදීප්ත ආලෝකය භාවිතා වන අපර (flash bulb) මාධාපයේ ෆෝටෝන වර්ධනයට (පුකාශ අනුනාදය) දෙපස තල දර්පණ දෙකක් පවතී.



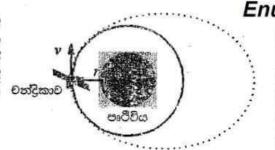
- මෙහි ලේසර් කදම්හයක් ඉවතට ගැනීම සඳහා A හා B නල දර්පණ දෙක සතුව පවතින සාපේක්ෂ ගුණය කුමක්ද?
- ii) එක් තල දර්පණයකින් ලේසර් කදම්භය ඉවතට පැමිණෙන්නේ එම තල දර්පණය සමග තරංග වල කුමන භෞතික ගුණය හේතු කොට ගෙනද?
- iii) පහත දැක්වෙන්නේ රුබි තුළ ඇති සැකඹුම් පරමාණුවල ශක්ති මට්ටම් තුනක පද්ධතියකි (Three level System)



v) වායු බුබුලේ පරිමාව ඉහත b) iv) හි සඳහන් වන ආකාරයට වැඩි වී සමතුලිත වීමෙන් පසුව මැනෝ මීටර දුව මච්චම් අතර නව චෙනස සොයන්න.

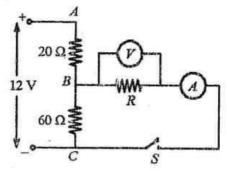
c) දකුණු පස රූපයේ පෙන්වා ඇති ආකාරයට අභාගන්තර අරය 2 mm වන සෝෂික නලයක් සිරස්ව එක් කෙලවරක් ජල බඳුනක ගිල්වා නිදහස් කෙලවරෙහි සබන් බුබුලක් සාදා ඇත. සබන් බුබුලේ අරය 25 mm වේ. ජලයේ ඝනත්වය 1000 kg m⁻³ හා ජලයේ පෘෂ්ඨික ආතකි සංගුණකය 7.4 × 10⁻² N m⁻¹ වේ.

- ්) කේෂික නලය තුල ඉහල නැගි ජල කළේ උස කොපමණද? (නලය තුල ඉහල ජල මාවකයේ ස්පර්ෂ කෝණය 60° වේ.)
- ii) කේෂික නලය තව දුරටත් ජලය තුලට ගිල්වන විට දී සබන් බුබුලේ අරය වෙනස් වන ආකාරය කෙටියෙන් පැහැදිලි කරන්න.
- d) ඉහත සඳහන් කේෂික නලය පිටතට ගෙන එහි කෙළවරෙහි සබන් බුබුලක් රඳවා ගෙන ඇත්තේ H උස ජල කඳක් නලය තුළ සිර කරගෙනය. ඉහල මාවකයේ ස්පර්ශ කෝණය ශූනා වන අතර පහල දුව මාවකයේ ස්පර්ශ කෝණය 60° කි. සබන් බුබුලේ අරය 25 mm කි.
 - i) මෙම අවස්ථාවේ දී සිරවී ඇති ජල කදේ උස (H) සොයන්න.
 - සබන් බුබුල කැඩී ගියහොත් නලය තුල රඳවා ගත හැකි ජල කඳේ උපරිම දිග සොයන්න. (ඉහල මාවකයේ ස්පර්ශ කෝණය ශූනා)



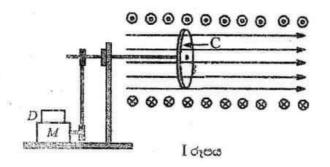
- a) ගුරුත්වාකර්ෂණය පිළිබඳ නිවුටත් තියමය ලියන්න.
 - b) i) ගුරුත්වාකර්ෂණ ක්ෂේතුයක් තුල පිහිටි ලක්ෂායක ගුරුත්වාකර්ෂණ විභවය අර්ථ දක්වන්න.
 - ii) එවැනි ලක්ෂායක විභවය සෘණ වන්නේ ඇයි දැයි පැහැදිලි කරන්න.
 - c) පෘථිවියේ ස්කන්ධය චන්දුයාගේ ස්කන්ධයමෙන් 81 ගුණයක් වන අතර පෘථිවියට තම අක්ෂය වටා එක් වරක් හුමණය වීමට ගත වන කාලය (ආවර්ත කාලය) පැය 24 වේ.

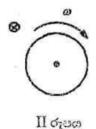
(පෘථිවියේ අරය = $6.4 \times 10^6 \, \mathrm{m}$, චන්දුයාගේ අරය = $1.6 \times 10^6 \, \mathrm{m}$)


- චන්දයා තම අක්ෂය වටා එක් වටයක් භුමණය වීමට ගත වන කාලය (ආවර්ත කාලය) සොයන්න.
- චන්දුයා වටා කæගත කරන ලද චන්දිකාවක් භු ස්ථාවර චීමට සපුරා ලිය යුතු අවශාතා සඳහන් කරන්න.
- iii) පෘථිවිය වටා ගමන් කරන භූ ස්ථාවර චන්දිකාවක් කක්ෂ ගත කල යුත්තේ පෘථිවි කේන්දුයේ සිට $4.2 \times 10^7 \, \mathrm{m}$ දුරකින් නම් චන්දුයාගේ භූ ස්ථාවර චන්දිකාව පිහිටිය යුත්තේ චන්දුයාගේ කේන්දුයේ සිට කොපමණ උසකින් දැයි සොයන්න.
- iv) පෘථිවියේ සිට නිරීකෂණය කරන විට සෑම විට චන්දුයාගේ එක් පැත්තක් පමණක් නිරීකෂණය වීමට හේතුව කෙටියෙන් පහදන්න.
- d) ස්කන්ධය M සහ 16M ද අරයන් පිළිවෙලින් R සහ 2R ද වන හරු දෙකක් ඒවායේ කේන්දු 2 ක අතර දුර 10R වන පරිදි පිහිටා තිබේ. විශාල තරුවේ පෘෂ්ඨයේ සිට කුඩා තරුව වෙත සෘජුව පුක්ෂේපනය කරන ලද m ස්කන්ධයක් කුඩා තරුවේ පෘෂ්ඨය වෙත ළඟාවීමට නම් එම වස්තුවට විශාල තරුවේ පෘෂ්ඨයේදී ලබා දිය යුතු අවම පුවේගය සඳහා පුකාශනයක් G , M හා R ඇසුරෙන් ලබා ගන්න.

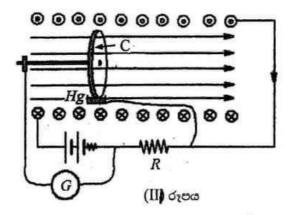
e) චන්දිකාවක් V₀ වෙගයකින් පෘථිවිය වටා අරය r වූ චෘත්තාකාර පථයක ගමන් කරයි. චන්දිකාවේ සිට එහි චලික දිශාවට (1 v₀ වූ සාපේක්ෂ පුවේගයකින් වස්තුවක් ප පුක්ෂේපනයි කරන ලදී. ඉන් අනතුරුව සිදුවන චලිකයේදී චස්තුව හා පෘථිවි කේන්දුය අතර ඇතිවන උපරිම සහ අවම චන්දිකාව දුර පුමාණයන් සොයන්න.

- 9) A) ට හෝ 9) B) ට පමණක් පිළිතුරු සපයන්න.
- 9) A) a) විද්යුත් පුතිරෝධය අර්ථ දක්වන්න.
 - b) සත්නායකයක විද්යුත් පුතිරෝධයක් තිබීමට හේතුව කුමක්ද?
 - c) උෂ්ණත්වය සමග සන්නායකයක විද්යුත් පුතිරෝධය වැඩිවීමට හේතුව කුමක්ද?
 - d) සුපිරි සන්නායකතාවය යනු කුමක්ද?

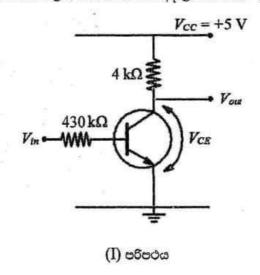

කිසියම් උපාංගයක විද්යුත් පුතිරෝධය නිර්ණය කිරීමට සිසුවකු විසින් අවචන ලද පරිපථයක් රූපයේ දැක්වේ. නොදන්නා පුතිරෝධය R, ඇමීවරයක්, චෝල්ට් මීවරයක් හා ස්වීචයක් රූපයේ පරිදි යා කර ඇති අතර පරිපථයට ජවය සපයනු ලබන්නේ වීභව බෙදුමක් මගිනි.



- e) i) S ස්වීචය විවෘතව ඇති විට B හා C අතර විභව අන්තරය කුමක්ද?
 - ii) දැන් S වසනු ලැබේ. ඇමීටරය හා වෝල්ට්මීටරය පරිපූර්ණ යැයි සිතත්ත. වෝල්ට්මීටර පාඨාංකය V හා ඇමීටර පාඨාංකය I ඇසුරින් R සඳහා පුකාශණයක් ලියා දක්වත්ත.
 - iii) වෝල්ට් මීටරයේ අභායන්තර පුතිරෝධය Rv නම් R සඳහා පුකාශයක් V, I සහ R_V ඇසුරින් ලියා දක්වන්න.
 - iv) චෝල්ට්මීවර පාඨාංකය 6V නම් චෝල්ට්මීවරය පරිපූර්ණ යැයි සලකා R නිර්ණය කරන්න.

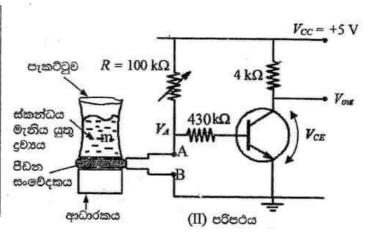

පුායෝගික චෝල්ට්මීටර පරිපූර්ණ නොවේ. මේ නිසා ඒවායෙන් නිවැරදිම වීභව අන්තරය නොපෙන්වයි මේ නිසා R සඳහා ලැබෙන අගය ද දෝෂ සහිතය. පහත දැක්වෙන්නේ පුතිරෝධය මිනීමේ නිරපේක්ෂ කුමයකි.

පොටවල් ලංව එතු පරිණාලිකාවක් මේ සඳහා යොදා ගැනේ. මෙහිදී (C) තඹ කැටියක් විදුලි මොටරයක් (M) ආධාරයෙන් පරිණාලිකාව තුළ හුමණය කරවනු ලැබේ. මෝටරයෙහි හුමණ සීඝුතාවය සංකතිකව වෙනස් කළ හැකි අතර එයට සම්බන්ධ (D) උපාංගය මගින් හුමණ වේගය දක්වයි.



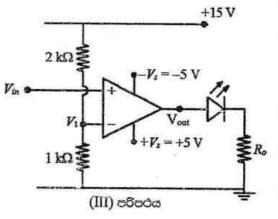
- f) I ධාරාවක් ගලන දිග සෘජු පරිණාලිකාවක අක්ෂය මත චුම්භක සුාව ඝණත්වය B සඳහා පුකාශයක් ලියා දක්වන්න. අමතර සංකේත හඳුන්වන්න.
- g) (I) රුපයේ පරිදි නඹ නැටිය පරිණාලිකාව තුළ ඇති චුම්භක ක්ෂේතුය තුළ භුමණය කරන විට නැටියේ දාරය හා කේන්දුය අතර E විද්යුත් ගාමක බලයක් පේුරණය වේ. තැටියෙහි අරය r ද එහි කෝණික පුළුවිගය ග ද වේ. පරිණාලිකාව තුල චූම්භක සුාව ඝනත්වය ඉහත (f) හි දැක්වෙන අගය ලෙස සලකා,
 - i) E සඳහා පුකාශණයක් ඉහත භාවිතා කල අනෙකුත් සංකේත ඇසුරින් ලියා දක්වන්න.
 - ii) (II) රූපයේ E හි ධන අගුය කොතනද? (කේන්දුයේද හෝ පරිදියේද)

- h) දැන් බැටරිය, පරිණාලිකාව හා R පුකිරෝධකය සමග (III) රූපයේ පරිදි ලේණීගතව යා කරනු ලැබේ. තැටියෙහි දාරය සහ අක්ෂය මැද බිංදු ගැල්වනෝමීටරයක් සමග R ව යා කර ඇත. දැන් තැටියෙහි කෝණික පුවේගය කුමයෙන් වැඩි කරනු ලබන්නේ ගැල්වනෝමීටරයෙහි උක්කුමණය ශූනා වන පරිදිය. තැටියෙහි දාරය කුඩා දෝනිකාවක ඇති රසදිය සමග ස්පර්ෂව ගමන් කරන අතර එමගින් සැපයුම් ධාරාව පිටකට ගනු ලැබේ.
 - ගැල්වනෝමීටර පාඨාංකය ශූනා වීමට හේතුව කුමක්ද? i)
 - ii) R සඳහා පුකාශණයක් ඉහත සංකේත ඇසුරින් ලබා ගන්න.
 - iii) තඹ ස්පර්ශකයක් වෙනුවට රසදිය යොදා ගැනීමේ වාසිය කුමක්ද?
- 9) B) a) i) pnp වුංන්සිස්ටරයක හා කාරකාත්මක වර්ධකයක පරිපථ සංකේත ඇඳ ඒවායේ අගු නම් කරන්න.
 - ද්වී ධුැව ටුංන්සිස්ටරයක හා කාරකාත්මක වර්ධකයක පුයෝජන 2 බැගින් ලියන්න.
 - iii) ද්විධැව වුාන්සිස්ටරයකට වඩා කාරකාත්මක වර්ධකයකින් ලැබෙන පුධාන වාසි 2 ක් ලියන්න.
 - b) වුාන්සිස්ටරයක් ස්වීචයක් ලෙස භාවිතා කිරීමට අදාල සටහනක් (I) පරිපථයේ දැක්වේ.



පහත වගුව ඔබගේ පිළිතුරු පතුයේ සටහන් කරගෙන I පරිපථයට අදාල වන පරිදි වගුවේ හිස්තැන් **End** පූරවන්න. (පිළිතුරු ආසන්න පූර්ණ සංඛ්යාවට තැබීම පුමාණවත් චේ)

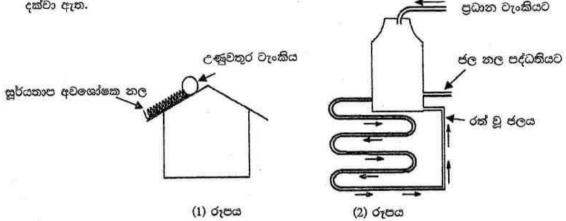
V _{in} (V)	V _{CE} (V)	V _{out} (V)	I _B (μA)	I _C (mA)
0 (කපා හැරි අවස්ථාව)	***************************************			
5 (සංතෘප්ත අවස්ථාව)			***************************************	


c) යම් ඉලෙක්ටොනික උපාංගයක් මත යෙදෙන පීඩනය චෙනස් වන විට එහි අගු අතර පුතිරෝධය වෙනස් වේ නම් එය පීඩන සංවේදකයක් ලෙස (Presure Sensor) පරිපථයකට යෙදිය හැක. යමකිසි දුවායක් ස්කන්ධය අනුව පැකට් කිරීමට යොදා ගත හැකි නව මාදිලියේ ඉලෙක්ටොනික උපකරණයක් සඳහා මෙවැනි පිඩන සංවේදකයක් යොදාගත් අවස්ථාවක් (II) පරිපථයේ දැක්වේ.

m(g)	Rp(kΩ)
0	-10000.0
50	500.0
100	100.0
150	40.0
200	10.0
250	8.0
300	2.5
350	1.0
400	0.5

පීඩන සංවේදකය මත පැකට්ටුව තබා ඇති අතර පැකට්ටුව තුලට අදාල ස්කන්ධය (m) යොදනු ලබයි. m හි අගයන් කිහිපයකට අදාල පීඩන සංවේදකයේ A හ B අගු අතර පුතිරෝධ අගයන් (R_P) ඉහත (I) වගුවේ දැක්වේ. R විවලා පුතිරෝධකයේ අගය $100~k\Omega$ හි පවත්වාගෙන ඇත.

- i) m = 0 වීට,
- ii) m=350g වන විට, V_A හා V_{out} සඳහා දළ අගයන් ආසන්න පූර්ණ සංඛාාවට ලියා දක්වන්න.
- iii) එක් පැකට්වුවක තිබිය යුතු දුවා ස්කන්ධය 350g වේ. පැකට්වුවට අදාල ස්කන්ධය කුමයෙන් එකතු කරන විට m හි අගය 350g සීමාව පසු කරන විටම ඒ බව දැන ගැනීම පිණිස ඉහත (II) පරිපථයේ පුතිදානය (Vout) පහත (III) පරිපථයේ Vin ට සම්බන්ධ කරන ලදී.



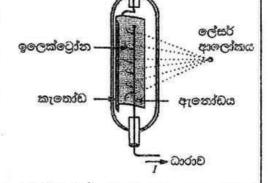
- V₁ විභවයේ අගය සොයන්න.
- m = 350 g වන විට V_{in} කොපමණ වේ ද?
- මේවිට Vout කොපමණ වේ ද?
- 4) මෙවිට Vout හි ධැවියතාව කුමක්ද?
- m හි අගය 350g ඉක්මවන අවස්ථාව (III) පරිපථය යොදා ගනිමින් හඳුනා ගන්නා ආකාරය කෙටියෙන් පහදන්න.
- 6) m=350g වන විට R_0 කුලින් ගලායන ධාරාව 10~mA වීමට අවශා R_0 හි අගය සොයන්න. (LED හි පෙර නැඹුරු චෝල්ටීයතාවය =1~V චෝ

10) A) ට හෝ 10) B) ට පමණක් පිළිතුරු සපයන්න.

- 10) A) a) i) දුවාසයක විශිෂ්ට තාපධාරිතාව අර්ථ දක්වන්න.
 - උෂ්ණත්වය අනුව දුවායක ඝණත්වය විචලනය සම්බන්ධ සමීකරණය ලියා එහි සඳහන් භෞතික රාශින් හඳුන්වන්න.

b) විදුලි බලය ඉතිරි කර ගනිමින්, සූර්යාලෝකය භාවිතයෙන් වතුර උණුකර ගැනීම සඳහා සකසන ලද ජල නල පද්ධති වර්තමානයේ බොහෝ නිවෙස් වල භාවිත වේ. මෙවැනි ජල නල පද්ධතියක් පහත රුපයේ දක්වා ඇත.

නිවසේ වහල මත පුධාන ජල ටැංකියට පහළ මට්ටමක දී උණුවතුර ටැංකිය සවිකර ඇති අතර ඊට යාබදව වහලය මත සිසිල් ජලය ගෙන යන සිහින්ව සකසන ලද සූර්යතාප අවශෝෂක නල රූපයේ පරිදි අතුරා ඇත. පළමුව පුධාන ටැංකියෙන් පැමිණෙන සිසිල් ජලය උණුවතුර ටැංකියට ඇතුළු වන අතර ටැංකියට සම්බන්ධ සිහින් නල තුලින් ඒවා ගමන් කොට සූර්ය තාපය අවශෝෂණය කරයි. රත් වූ ජලය ටැංකියට ඇතුළු වන ආකාරය රූප සටහනේ පෙන්වා ඇත. මෙසේ ටැංකිය තුල වූ ජලය සියල්ල එකම උෂ්ණත්වයකට පැමිණෙන තෙක් මෙම කියාව චකියව සිදුවේ. ටැංකිය තුල වූ ජලය භාවිතයට ගැනීම නිසා අඩු වන ජලය පුධාන ටැංකියෙන් පුරවා ගනී.

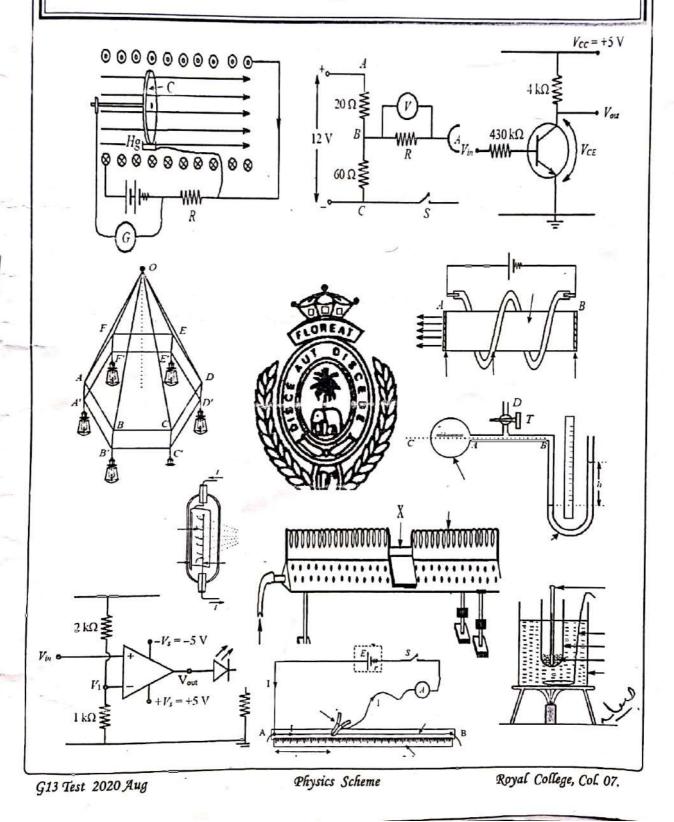

වහල මත අතුරා ඇති නල පද්ධතිය සිහින්ව සහ දිගින් වැඩිවන අයුරින් සකසා ඇත්තේ ඇයි?

- c) සූර්ය නියතය යනු සූර්යයා මගින් පොළව මතට ශක්ති සම්පේෂණය වන තීවුතාවයයි. එම තීවුතාවයෙන් 45% ක් තාපය ලෙසද 47% ආලෝකය ලෙසද සහ ඉතිරිය පාරජම්බුල කිරණ ලෙස පෘථිවියට පතනය වේ. පෘථිවියේ සූර්ය නියතය 1500 Wm⁻² කි.
 - 1 s ක දී සූර්යයා මගින් තාපය ලෙස පෘථිවියට පතනය කරන ශක්තියේ කීවුතාවය සොයන්න.
 - ii) සිහින් නල පද්ධතිය තාපය අවශෝෂණය කිරීමේ කාර්යක්ෂමතාවය 80% නම්, නල පද්ධතිය 1 s ක දී අවශෝෂණය කර ගන්නා තාප පුමාණය සොයන්න. නල පද්ධතියේ තාපය අවශෝෂණය කර ගන්නා සඵල ලම්භක වර්ගඵලය 2m² කි.
 - iii) පරිසර උෂ්ණත්වය 30° C වූ දිනක ටැංකිය $100 \, l$ දක්වා පිරුණු පසු පුධාන ටැංකියෙන් උණු වතුර ටැංකිය වෙත ජලය ගෙන එන නලය වසා දමන ලදී. මෙවිට ටැංකිය තුල වූ ජලය $100 \, l$, 80° C වූ ජලය බවට පත් කිරීමට ගත වන කාලය සොයන්න.
 - iv) ජලයේ උෂ්ණත්වය 80°C වූ විට ටැංකිය තුල ඇති ජල පරිමාව සොයන්න.
 - v) ජලය 80° C ව රත් වී ඇති විව, ඉහත ජල පුමාණය මගින් වැංකිය සම්පූර්ණයෙන්ම පිරි යයි. 30° C දී වැංකියේ පරිමාව කොපමණ ද? (වැංකිය සාදා ඇති දුවායේ රේඛීය පුසාරණතාවය $\alpha=3.3\times10^{-5}\,^{\circ}$ C $^{-1}$ වේ.)
 - vi) 30°C දී ජලයේ ඝණත්වය 1000 kgm⁻³ වේ නම් 80°C දී ජලයේ ඝණත්වය සොයන්න.
 - vii) රත් වූ ජලය සිහින් නල දිගේ නැවත ටැංකිය වෙත ගමන් කරන්නේ කෙසේද?

- viii) ටැංකියේ 80°C ට රක් වූ ජලය පවතින වීට, එම ජලය නෑමට භාවිතා කරන අවස්ථාවක් සලකන්න. නෑමට භාවිතා කරන ජලයේ උෂ්ණත්වය 35°C වේ නම් උණු ජලය හෝ ඇල් ජලය එකතු කළ යුතු
 - ස්කන්ධ අනුපාතය සොයන්න.
 - b) පරිමා අනුපාතය සොයන්න.

Enu

- ix) මිනිසෙකු නෑම සඳහා ජලය 30 / ක් භාවිකා කරන්නේ නම් නෑමට පසු උණු වතුර ටැංකියේ ඉතිරිව ඇති ජල පරිමාව ලීටර වලින් සොයන්න.
- X) මිනිසා නැමෙන් පසු ප්‍රධාන වැංකියේ සිට උණු වත්‍ර වැංකියට ජලය පැමිණෙන කපාටය විවෘත කරන ලදී. නැවත වැංකිය පිරුණු විගසම වැංකිය තුල පවතින ජලයේ උෂ්ණත්වය සොයන්න.
- d) $80\,^{\circ}$ C හි පවතින ජලය රාතුි කාලගේ දී පැය 6 ක් පමණ භාවිතයට නොගනී. පරිසර උෂ්ණත්වය 25° ක් වූ රාතියක පැය 6 ක් අවසානගේ වැංකිය තුළ වූ ජලයේ උෂ්ණත්වය 50° C පවත්වා ගැනීම සඳහා වැංකිය සාදා ඇති දුවාගේ තාප සන්නායකතා සංගුණකය කොපමණ විය යුතු ද? (වැංකියේ තහඩුවක ඝනකම = 0.5 cm, වැංකියේ සඵල පෘෂ්ඨක වර්ග ඵලය = 2 m^2 වැංකිය සාදා ඇති දුවාගේ විශිෂ්ධ තාප ධාරිතාවය සැලකිය නොහැකි තරම් කුඩා වේ.)
- 10 (B) a) ලෝහයක "කාර්යය ශිුතය" යන්නෙන් අදහස් කරන්නේ කුමක්ද?
 - b) i) පුකාශ ධාරාව පතිත ආලෝකයේ තීවුතාවය මත රඳා පවතී.
 - ii) වීමෝචනය වන ප්‍රකාශ ඉලෙක්ටුෝන වල ශක්තිය පතිත ආලෝකයේ සංඛනාතය මත රදා පවතී.ඉහත සිද්ධීන් සැකෙවින් පහදන්න.
 - c) "පුකාශ විද්යුත් ආවරණය" යන්න පිළිබඳව අයින්ස්ටයින් විස්තර කරනුයේ කෙසේද? ඔහුගේ විශ්ලේෂණයේ ඇති විශේෂ වැදගත් කරුණු සඳහන් කරන්න.
 - d) ක්ෂමතාවය $5.0~{
 m J~s^{-1}}$.වන ලේසර් පුභවයකින් තරංග ආයාමය $4.50 \times 10^{-7}~{
 m m}$ වූ ආලෝකය නිකුත් කරයි.
 - ඉන් නිකුත් වන එක් ලෝටෝනයක ශක්තිය ගණනය කරන්න.
 - එනයින් තක්පරයක දී නිකුත්වන ෆෝටෝන සංඛනව සොයන්න.
 - iii) කරංග ආයාමය 450 nm වූ කරංග විද්යුත් චුම්භක වර්ණාවලියේ කුමන පෙදසට අයත් ද?
 - iv) දක්වා ඇති ප්‍රකාශ කෝෂයේ කැතෝඩය කාර්ය ශ්‍රිතය 1.8 eV ලෝහයකින් සාදා ඇත්නම් මෙම ලේසර් මහින් ප්‍රකාශ ධාරාවක් ඇති වන බව පෙන්වන්න.


- v) ලේසර් ප්‍රභවයේ ක්ෂමතාව මුල් අගයෙන් පස් ගුණයක් (25 Js⁻¹) වූයේ නම් ප්‍රකාශ විද්‍රාුත් කෝෂයෙන් ලබා දෙන ප්‍රකාශ ධාරාව වෙනස් වන ආකාරය පහදන්න.
- vi) ප්‍රකාශ කැතෝඩය මත ලේසර් කිරණ පතිත වූ විට ඉන් විවිධ ශක්තීන්ගෙන් යුත් ඉලෙක්ට්‍රෝන වීමෝචනය වේ.
 - 1) වීමෝචිත ඉලෙක්ටුෝන වල උපරිම චාලක ශක්තිය ජූල් වලින් සොයන්න.
 - 2) එනයින් ඉලෙක්ටුෝන වල කුඩාම ඩී බොග්ලි තරංග ආයාමය සොයන්න.
- e) i) ඉලෙක්ටුෝන අන්වීක්ෂයකින් නාභිගත කළ හැකි ඉලෙක්ටුෝනවල ලක්ෂණ සඳහන් කරන්න.
 - ප්‍‍රකාශ අන්වීක්ෂයකට වඩා ඉලෙක්ටුෝන අන්වීක්ෂයක විභේදන හැකියාව වැඩිය. කෙටියෙන් පහදන්න.
 - iii) පදාර්ථයකින් තරංග ආයාමය $1 \times 10^{-11} \,$ m වන ඉලෙක්ටෝන ජනනය කිරීමට අවශාය චෝල්ටියතාවය සොයහ්න.
 - (ප්ලාන්ක් නියතය = $6.63 \times 10^{-34} \, \mathrm{Js}$, ආලෝකයේ පුවේගය = $3 \times 10^8 \, \mathrm{m \ s^{-1}}$, ඉලෙක්ටුෝනයේ ස්කන්ධය = $9.11 \times 10^{-31} \, \mathrm{kg}$, $e=1.6 \times 10^{-19} \, \mathrm{C}$)

Screening Test - August 2020 Grade 13

Physics

Marking Scheme

١		
	05. (a) (i)	බල දෙක <u>සමාන හා පුනිවිරුද්ධව එකම ජේබාවේ</u> කිුයා කල යුතුයි 02
	(ii)	ඉහල කෙළවරේ ආතතිය = 1.0 N 01
		පහල කෙළවරේ ආතතිය = 0.8 N 01
	(iii	ආතතිය 🛧
		1.0
		Т
	0.91	02
		0.8
		0 30 50 ≥ go
		1-0.8 T-0.8 (01
	(iv)	$\frac{1-0.8}{50-0} = \frac{T-0.8}{30-0} \implies T = 0.92 \text{N} 01$
	(b) (i)	$\sin\theta = \frac{3}{5} \implies \theta = \sin^{-1}\left(\frac{3}{5}\right) - \cdots 02$
		50 cm θ
	*	
		30 cm
	(ii)	ABCDEF හා A'B'C'D'E'F' ෂඩසුහා ඒවා සම්බන්ධ සිරස් කම්බි 6 හි
		මුළු ස්කන්ධය = (30 cm × 6 × 2 + 10 cm × 6) = 420 g 02
		OA කම්බියේ ආතතිය T නම් $6\ T\cos\theta = (420 \times 10^{-3} + 50 \times 6 \times 10^{-3})\ 10 \ \Rightarrow$ 02
		$6 \text{ T} \times \frac{4}{5} = 720 \times 10^{-2} \implies \text{T=1.5 N}$
	(iii)	: /
		$2 \operatorname{F} \cos 60^{\circ} = \operatorname{T} \sin \theta \Rightarrow 02$
		F $2 \text{ F} \times \frac{1}{2} = 1.5 \times \frac{3}{5} \implies \text{F} = 0.9 \text{ N} 01$
		F F
		,
	(iv)	බාහුව දිගේ යෙදෙන බලයන් ශුතා වේ 02
	(v) :	කම්බිය තිරසට ආතතිය අඩුවන විට බර දරා සිටීමට අවශාා සිරස් සංරචකය අත්කරා
		තැනීමට ආතතිය වැඩි විය යුතුයි 02

```
(vi) 1.2\sqrt{2}\cos\alpha = 120\times10^{-2} \Rightarrow
                     \cos \alpha = \frac{1.2}{1.2\sqrt{2}} = \frac{1}{\sqrt{2}} \qquad \Rightarrow \quad \alpha = 45^{\circ} \qquad -
                    \cos 45^{\circ} = \frac{30}{U} = \frac{1}{\sqrt{2}}
                                  y = 30×1.4 = 42 cm
           (vii) T\cos\theta = \frac{720 \times 10^{-2}}{6} \Rightarrow T = 1.5 \text{ N}
                    F = ma \Rightarrow T \sin \theta = \frac{m}{6} r \omega^2 \Rightarrow \frac{g}{r} \tan \theta = \omega^2 \Rightarrow
                   \omega^2 = \frac{10}{30 \times 10^{-2}} \times \frac{3}{4} \qquad \Rightarrow \qquad \omega = 5 \, rad \, s^{-1} \quad -
06. (a) <u>දෘෂප ආලෝකය</u>
           l. ෆෝවෝන සමචාරි නොවේ
           2. ෆෝටෝන වලට විවිධ දිශා ඇත
                                                                                  } - - ඉටු - - 02 ලදකක් නිවැරදි නම්
           3. සංඛ්‍යාත පරාසය විශාල වේ / විවිධ සංඛ්‍යාත වලින් යුක්ත වේ
          1. ෆෝටෝන සමචාරි වේ
          2. එකම දිශාවට යොමු වී ඇත }
          3. ඉතා තිවු වේ
                                                                                 දෙකක් නිවැරදි නම්
          4. ඒක වර්ණ වේ
    (b) මිත ස්ථායි ශක්ති මට්ටම් තිබීම , ශක්ති මට්ටම් තුනක් හෝ ඊට වැඩි
          සංඛතාවක් තිබිය යුතුයි, ඉහල ශක්ති මට්ටම ගහන අපවර්තනයක් තිබීම 🖯 දෙකක් නිවැරදි නම
   (c) (i) ස්වයං සිද්ධ වීමෝචනය _
      (ii) E = h f = h \frac{c}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{600 \times 10^9} = 3.3 \times 10^{-19} \text{ J}
  (d) (i) B - ෆෝටෝන පරාවර්ථනය වීම විය යුතුයි
            (ii) විවර්ථන
      (iii) E = h f \Rightarrow E_1 - E_0 = h \frac{c}{\lambda} \Rightarrow \lambda = \frac{h c}{E_1 - E_0} -----01
           \lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{(-4.65 + 6.5) \times 1.6 \times 10^{19}} = \frac{10.7 \times 10^{-7}}{1 \cdot 6} \text{ m} = 6.68 \cdot 9 \text{ mm} = 01
```

G13 Test 2020 Aug

02

01

01

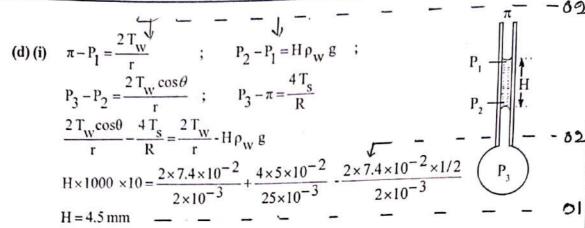
2

01

01

30

	(iv) $n \frac{\lambda}{2} = l \implies l = 10^6 \times \frac{10}{2}$	$\frac{0.7 \times 10^{-7}}{2} = 0.535 \text{m}$	01 01
	(v) <u>වෛදප යෙදීම්</u>	: අක්ෂි ශලා කටයුතු සඳහා , ආහාර මාර්ගය ආශිුතමෙවිදා , වීමර්ශන විශේෂීත ශලාකර්ම	02
	<u>ආරක්ෂක යෙදීම්</u>	: ඉලක්ක ගැනීම , දුර තීරණය කිරීම, } ඉලක්ක සැලසුම් කිරීම එකක් නිවැරදි නම්	02
2003	<u>කාර්මික කටයුතු සඳහා</u>	ලෝහ තහඩු කැපිය හැක, } එකක් නිවැරදි නම්	02
(e	2	$\Rightarrow \lambda_2 = 450 \text{ nm}$	01
	$\frac{5}{4} = \frac{1070}{\lambda_2^1} \Rightarrow \lambda_2^1 = 8$	356 nm	01
	(ii) 450 nm විට $\frac{4}{3} = \frac{3}{3}$	$\frac{\times 10^8}{v_1}$ \Rightarrow $v_1 = 2.25 \times 10^8 \text{ m s}^{-1}$	01
	856 nm විට $\frac{5}{4} = \frac{3}{10}$	$\frac{<10^8}{v_2}$ \Rightarrow $v_2 = 2.4 \times 10^8 \text{ m s}^{-1}$	01
	(iii)	<u>A</u>	
		2 m	01 01
	(iv) 450 nm විට $\sin c_1 = \frac{1}{4/3}$	50 1 0	
	450 nm විට $\sin c_2 = \frac{1}{5/4}$	$\frac{1}{4} = \frac{4}{5}$ $c_2 = 53^{\circ}40^{\circ} \circ 8'$	
	(v) $\tan c_1 = \frac{r_1}{2} \implies r_1 = 2 \tan r_2$	$148^{\circ}40^{\circ} = 2.26 \mathrm{m}$	01
	$\tan c_2 = \frac{r_2}{2} \implies r_2 = 2 \tan r_2$	$\sin 53^{\circ}40^{\circ} = 2.66 \text{ m}$	01
		The second secon	


$$\begin{array}{c} \textbf{07. (a) (i)} \quad (P_1 \cdot P_2) = \frac{4T}{R} \\ P_1 \cdot 2 e = e = 0.65 \text{ ded} \\ P_2 \cdot 2 e = 0.65 \text{ ded} \\ P_3 \cdot 2 e = 0.55 \text{ ded} \\ P_4 \cdot 2 e = 0.55 \text{ ded} \\ P_5 \cdot 2 e = 0.55 \text{ ded} \\ P_6 \cdot 2 e = 0.55 \text{ ded} \\ P_7 \cdot 2 e = 0.55 \text{ ded} \\ P_8 \cdot 2 e = 0.55 \text{ de$$

(ii) සහනු විහිල සැලසු ැම්ලේ නයක් සෞතු දුරුණු ව!

G13 Test 2020 Aug

Physics Scheme

Royal College, Col. 07.

30

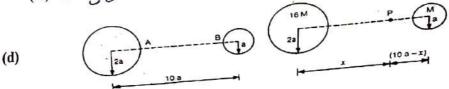
- 08. (a) ස්කන්ධ දෙකක් අතර අති වන ගුරුත්වාකර්ෂණ බලය ස්කන්ධ වලට අනුලෝමව සමානුපාතික වන අතර ස්කන්ධ අතර දුරේ වුර්ගයට පුතිලෝම ව සමානුපාතික වේ. — — — — $^{\prime\prime}$ 2
 - (b) (i) අනන්තයේ ඇති l kg ස්කන්ධයක් ගුරුත්වාකර්ෂණ බලය තුල පිහිටි ලක්ෂයට ගෙන ඒමට කල යුතු කාර්යය පුමානය එම ලක්ෂයේ ගුරුත්වාකර්ෂණ විභවය වේ. — — ტ 💯
 - (ii) අවශා කාර්යය භාතිර පුභවය මගින් කල විට විභවය ධන අගයන් වන අතර අවශා කාර්යය ගරුත්වාකර්ෂණ ක්ෂේතුය මගින් කරන්නේ දී එම ලක්ෂයේ විභවය සෘණ අගයකි. — ලද

(c) (i)
$$\operatorname{mr}\left(\frac{2\pi}{T}\right)^{2} = \frac{G \operatorname{Mm}}{r^{2}} \Rightarrow T^{2} = \frac{4\pi^{2}}{G \operatorname{M}} r^{3} - - - 0 2$$

$$24^{2} = \frac{4\pi^{2}}{G \operatorname{81M}} \left(6.4 \times 10^{6}\right)^{3} \dots (i) \qquad T^{2} = \frac{4\pi^{2}}{G \operatorname{M}} \left(1.6 \times 10^{6}\right)^{3} \dots (ii)$$

$$\frac{(ii)}{(i)} \Rightarrow \frac{T^{2}}{24^{2}} = \frac{81}{1} \times \frac{(1.6)^{3}}{(6.4)^{3}} \qquad T = 27 \text{ hrs} - - - 0 1$$

iii)
$$r^{3} = \frac{GM}{4\pi^{2}} T^{2}$$


$$\left(4.2 \times 10^{7}\right)^{3} = \frac{G \times 81M}{4\pi^{2}} (24 \times 3600)^{2} \dots (i)$$

$$r^{3} = \frac{GM}{4\pi^{2}} (27 \times 3600)^{2} \dots (ii)$$

$$\frac{(ii)}{(i)} \Rightarrow \frac{r^{3}}{\left(4.2 \times 10^{7}\right)^{3}} = \frac{(27 \times 3600)^{2}}{81(24 \times 3600)^{2}} = \frac{1}{64}$$

$$r = 1.05 \times 10^{7} \text{ m}$$

(iv) සමමුගුර්කකරණය (Synchronous rotation)

02 Let distance of this point P from centre of larger star be x.

Gravitational potential energy of body at A = that due to larger star + that due to smaller00

imilarly, gravitational potential energy at
$$P$$
,
$$U_2 = -\frac{G(16M)m}{8a} - \frac{GMm}{2a}$$

$$= -\frac{5}{2} \frac{GMn}{a}$$

Minimum kinetic energy required at A = Increase in potential energy from A to P

the energy required at
$$A = Increase in partial $\frac{1}{2} m v_0^2 = U_2 - U_1$

$$v_0 = \sqrt{\frac{45 GM}{4a}}$$$$

particle is projected with relative velocity velocity of the (e) 01

angular momentum of particle at this instant = angular momentum just after its projection $mur = m (v_0 + v) a .$

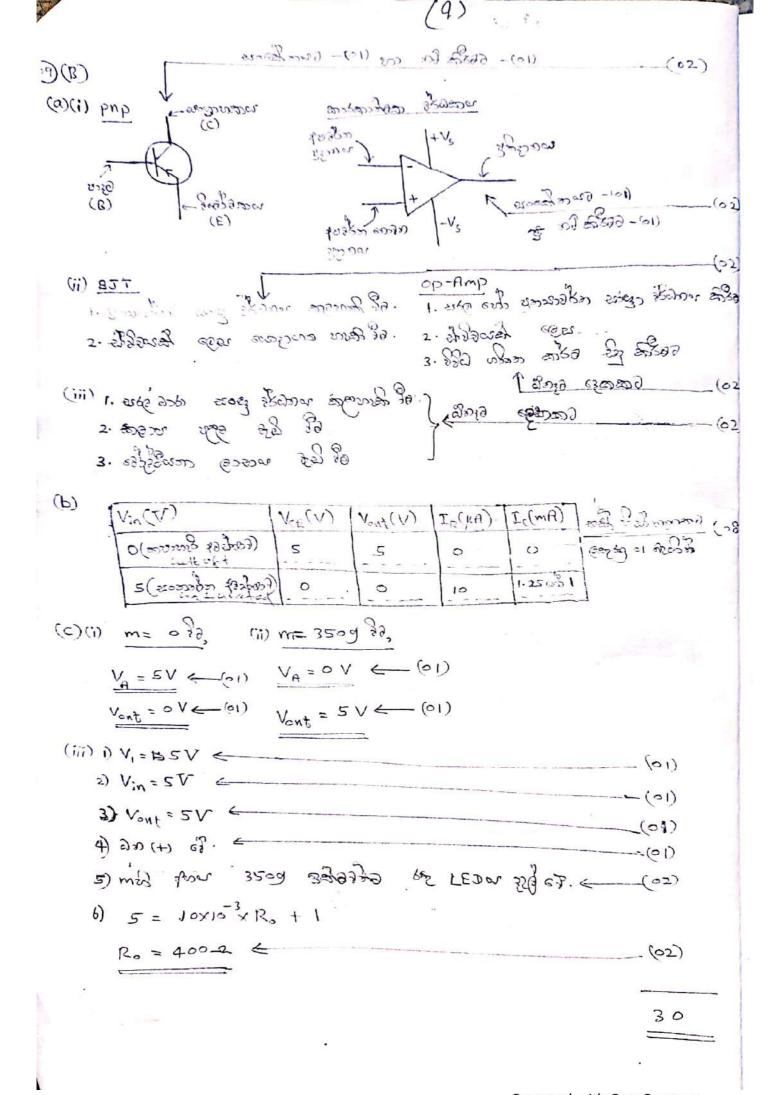
or
$$u = \frac{(v_0 + v) a}{r} = \sqrt{\frac{5GM_e \cdot a}{4r^2}}$$

According to law of conservation of energ

According to law of conservation of energy,
$$\frac{1}{2}mu^2 + \left(-\frac{GM_e \cdot m}{r}\right) = \frac{1}{2}m\left(v_0 + v\right)^2 + \left(-\frac{GM_e \cdot m}{a}\right)$$
substituting $u = \sqrt{\frac{5GM_e a}{4r^2}}$ and $(v_0 + v) = \sqrt{\frac{5GM_e}{4a}}$ in above equation,

$$3r^{2} - 8ar + 5a^{2} = 0$$

$$(r - a)(3r - 5a) = 0$$


$$r = a \text{ and } \frac{5a}{3}$$

minimum distance of particle = $a \in$

minimum distance of particle =
$$a = \frac{5a}{3}$$
 its maximum distance = $\frac{5a}{3}$ $\frac{30}{30}$

0

- 8 -	
9(A) a)The potential difference required for unit current in a b)During the drifting of electrons, they collide with ata	oms which resist the motion of electrons.
b)During the drifting of electrons, they	
c) In conductors, no significant rise of number of free the thermal agitation of the atoms, more collisions of	electrons with rise of temperature. But due to
d) When the temperature of some conductors is decr temperature, their resistance suddenly drops to zero.	1
e) i) V _{sc} =60x12/(60+20) =9V	
ii) R=V/I	
ii) Equivalent resistance of R and R _y =RR _y /(R+R _y)	
Therefore v=IRR /(R+R _v)	
R=VR√(IR _v -v)	
iii) As 60Ù and R are connected parallel and the equivalent resistance of R and 60Ù must be 200	
f) B=μ ₀ nl n—number of turns per unit length	n of the solenoid
μ ₀ —Permittivity of free space	
g) 1) $E=Br^2\dot{u}/2=\mu_0nIr^2\dot{u}/2$	
Withoudge of the disc is positive	
h) I) The potential difference across the disc i	s neutralized by that of across R
1	

		- 10-
10.(A) a)	i)	යම් දුවසයක 1 kg උෂ්ණත්වය 1 °C හෝ 1 K න් ඉහල නැංවීමට අවශාවන තාප පුමාණය වේ
	ii)	$\rho_1 = \rho_2 \left(1 + \gamma_{mmn} \theta \right)$
		$ ho_1$ — දුවයේ ආරම්භක සනත්වය $ ho_2$ — උෂ්ණත්වය ඉහල නැංවූ පසු සනත්වය — — — — $ ho_2$, $ heta$ — උෂ්ණත්ව අත්තරය γ_{non} — දාවයේ සතා පුසාරණතාවය
b)	දිගින් වැ	න් ගලා යන ජලය සමඟ හොඳ තාපඡ ස්පර්ශයක් ලැබෙන බැවින් අඩ්වන විට ස්පර්ශ වන පෘෂ්ඨ ව.හ. වැඩි වේ. සිහින් විට ජලය – – – ව නු බිත්ති සමඟ නොදින් ස්පර්ශව පවති.
c)	i)	$1500 \times \frac{45}{100} = 675 \text{ W m}^{-2} $
	ii)	$675 \times 2 \times \frac{45}{100} = 1080 \text{W}$
	iii)	$\frac{\text{ms}\theta}{\text{t}} = 1080 \implies \text{t} = \frac{100 \times 4200 \times 50}{1080} = 5.4 \text{ h} $
	iv)	$V_2 = V_1 (1 + \gamma \theta)$ = 100 (1 + 1.5×10 ⁻⁴ ×50) = 100.751
*	v)	$V_2 = V_1(1+\gamma\theta)$ 100.75 = $V_1(1+3\times3.3\times10^{-5}\times50)$ 62
950		$V_1 = \frac{100.75}{1.00495} = 100.251$ — — — — — — — — — — — — — — — — — — —
	vi)	$\rho_1 = \rho_2 (1 + \gamma_{\text{expa}} \theta) \Rightarrow 1000 = \rho_2 (1 + 3 \times 3.3 \times 10^{-5} \times 50) 69$ $\rho_2 = \frac{1000}{1.00495} = 995.07 \text{kg m}^{-3}$
	vii)	රත්වු ජලයේ ඝනත්වය 30 °C ජලයේ ඝනත්වයට වඩා අඩු බැවින් ව 2 ඝනත්වය අඩු ජලය නල ඹස්සේ ඉහල යයි.
	viii)	misw (80-35) = M2Sw(35-30) Mi: M2=1:0 mi-hot water mass M2-Cool water 00
	ix)	$v_1: v_2 = \frac{1}{100} : \frac{9}{100} \approx 1:9 v_1 = \frac{30}{100} = 3$
	x)	ඉතිරි ඇති ජල පරිමාව
42	**	= (100.75-3) = 17 3×4200 (4-30) = 9775×4200 (80-6) 0 + = 78.5°C
(4	4)	$\mathcal{L} = \mathbb{K} \left(\frac{O_1 - O_2}{J} \right) $ [30]
G13 Test	2020 Au	Physics Scheme Royal College, Col. 07.

Scanned with CamScanner

- 10B (a) The work function of a material is defined as the minimum amount of energy possessed by a photon which is able to free an electron from the surface of a metal when incident on that surface. (The value depends upon the nature of the metal.)
 - (b) (i) The greater the intensity, the greater the number of photons that strike the surface per unit area per unit time. Hence the greater the number of electrons emitted per unit time, i.e. the photoelectric current increases but not the energy of the individual photoelectrons. The current is proportional to the intensity of the incident light.
 - (ii) Provided the frequency of the incident light is greater than the threshold frequency, then an
 increase in frequency will increase the energy of the photoelectrons (but the photoelectric
 current will remain constant)

i.e. maximum energy of photoelectrons equals the energy of incident photon - work function, i.e. $K_{max} = hf - \Phi$.

- (c) Einstein suggested that light consists of discrete units of energy, later called photons. The energy per photon was proportional to the frequency of the light (E = hf). He assumed that each photon surrendered all of its energy to one, and not more than one, electron, and that an electron absorbs, at most, one photon. Since Energy of photon is hf and minimum photon energy $= hf_o$ ($= \Phi$), thus, if $f < f_o$, the photon has insufficient energy to allow an electron to escape. If $f > f_o$, electrons will be emitted regardless of the intensity. The major significance of Einstein's explanation was that light energy of a given frequency was not a continuous amount of energy, but existed in discrete bundles (quanta) of energy.
- (d) (i) The energy of a single photon, $E = hf = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34}}{450 \times 10^{-9}}$ = 4.42 × 10⁻¹⁹ I
 - (ii) The number of photons per second = $\frac{\text{the energy per second}}{\text{the energy per photon}}$ $= \frac{5}{4.42 \times 10^{-19}}$
 - (iii) Light of wavelenth 450 nm is blue.
 - (iv) Enegty of each photon = 4.42×10^{-19} J

$$= \frac{4.42 \times 10^{-19}}{1.6 \times 10^{-19}} \text{ eV}$$
$$= 2.76 \text{ eV},$$

which is greater than the work function of the metal, therefore photon emission will occur.

- (v) If the power were increased five fold then
 - the number of photons emitted by the laser per second increases by five times (i.e. the intensity of the light increases five times)
 - the number of electrons emitted from the surface increases five times (i.e. the photo electric current increases five times)

(vi)(I) The maximum kinetic energy of the photoelectrons,

$$K_{max} = E_{photon} - \phi$$

= 2.76-1.8
= 0.96 eV
= 0.96 x 1.6 x 10⁻¹⁹ J
= 1.54 x 10⁻¹⁹ J

(II) The shortest de Broglie wavelength is
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK_{\text{max}}}}$$

$$= \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.11 \times 10^{-31} \times 1.54 \times 10^{-19}}}$$

$$= 1.25 \times 10^{-9} \,\text{m}$$

- (e) (i) Their charge
 - (ii) Resolution is limited by the size of the object in relation to the wavelength used to examine the object. The smaller the wavelength the smaller the object that can be resolved before diffraction limits resolution. Sice the de Broglie wavelength of electrons with energies typical of those used in these microsscopes is much smaller than that of visible light then electron microscopes can achieve higher resolution.
 - (iii) The wavelength is determined by: $\lambda = \frac{h}{p}$. The momentum p is related to the kinetiv energy K, which is determined by the accelerating voltage ΔV :

$$K = e\Delta V = \frac{p^2}{2m} \Rightarrow \Delta V = \frac{h^2}{2me\lambda^2}$$

$$\Delta V = \frac{\left(6.63 \times 10^{-34}\right)^2}{2 \times 9.11 \times 10^{-3} \times 1.6 \times 10^{-19} \times \left(10 \times 10^{-12}\right)^2}$$

$$= 1.5 \times 10^4 \text{ V}$$

ombo 07 - 20.20. August G1-13 Class	(42) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (4) (5) (44) (1) (2) (3) (44) (1) (2) (3) (44) (1) (2) (3) (44) (1) (2) (3) (44) (1) (2) (3) (44) (1) (2) (3) (44) (1) (2) (3) (44) (1) (2) (3) (44) (2) (44) (1) (2) (3) (44) (2) (44) (1) (2) (2) (44) (2) ((45) (1) (2) (3) (4) (6) (48) (1) (2) (3) (4) (5) (48) (1) (2) (3) (4) (5) (49) (1) (2) (3) (4) (5) (50) (1) (2) (3) (4) (5) (50) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	න් ලකුණු 100 ක් Marks
Colc	(31) (80 (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	(35) (1) (6) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	නිවරදී පුතිචාර සංබැතුම No. of correct responses
63 - 630 67 / Royal College - 630 550 60 60 7 / G. C. E. (A/L) Ex also colso colso 60 7 / M C Q Answer Signer forms of the colso forms of the cols	(21) (2) (3) (2) (4) (5) (24) (3) (2) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	(25) ① ② ① ① ① ① ② ② ② ② ② ② ② ② ② ② ② ③ ③ ③ ⑤ ③ ⑤ ③ ⑤ ⑤ ⑤ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥	miner 2
රාජකීය විදුනාලය - අ. පො. ස. (උ. පේ මුණුවර	(11) (1) (2) (3) (4) (13) (1) (2) (3) (4) (5) (14) (15) (3) (4) (5) (6) (5) (7)	(15) (1) (19) (19) (16) (19) (19) (19) (19) (19) (19) (19) (19	calmo දනු පරිකකයක් සංකේශ අංකය Code No. and Signature of the Examiner කණිත පරිකමක Arithmatic Cheker
Dea w Dea coma Subjet and subject No.	(01) (1) (2) (2) (4) (6) (9) (10) (10) (10) (10) (10) (10) (10) (10	(05) (1) (2) (8) (4) (6) (10) (10) (10) (10) (10) (10) (10) (10	වැරදි පුගිචාර සංබයාව No. of Incorrect responses

රාජකිය විදුහලය - කොළඹ 07 13 ලෝණිය

_
-
l

අනාවරණ පරිස්කණය - 2020 අගෝස්තු මහමතික විදහාව II

Three hours

Marking Scheme (4800 6058 m) - 8500 106
Additional Reading Time - 10 minutes

අමතර කියවීම කාලය පුත්ත පතුය කියවා පුත්ත තෝරා ගැනීමටත් පිළිතුරු ලිවීමේ දී පුමුවත්වය දෙන පුත්ත 🛣 සංවිධානය කර ගැනීමටත් යොදා ගන්න.

විහ					
E) 63	200	Phon	NO.	ARE ST	
-	200	CO		w	

පත්තිය : -.....

වැදගත

- මෙම පුශ්න පතුය පිටු 17 කින් යුක්ත
- මෙම පුශ්න පතුය A හා B යන කොටස් දෙකකින් යුක්ත වේ. කොටස් දෙකට ම නියමිත කාලය පැය 3 යි
- ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.

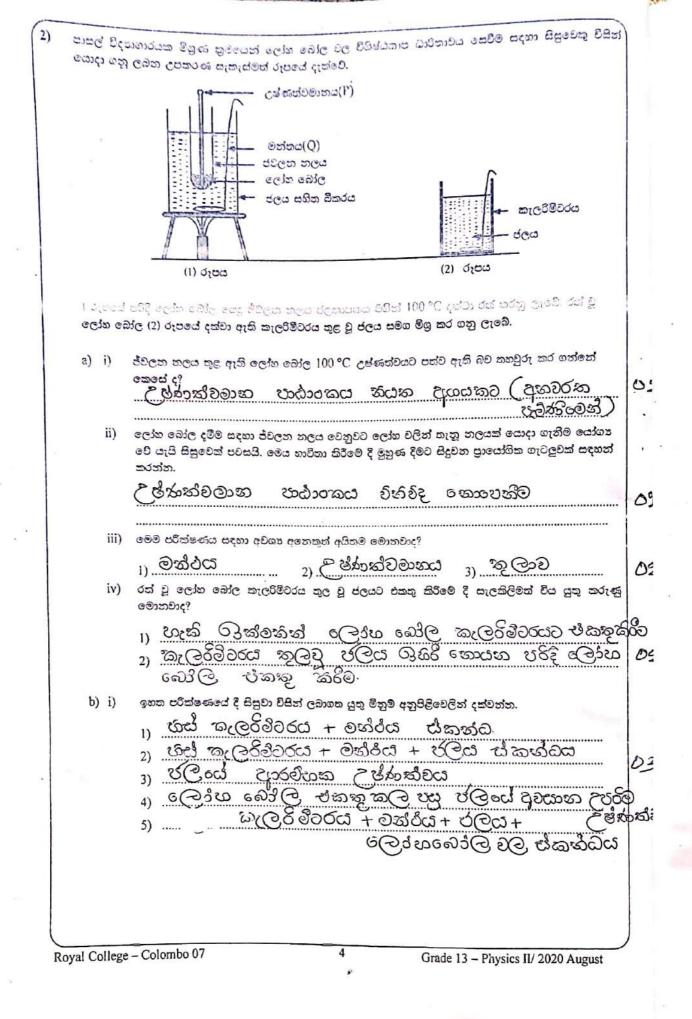
A කොටස - වසුනගත රචනා (용의 08 육)

සියලුම පුශ්නවලට පිළිතුරු මෙම පතුයේම සපයන්න. ඔබේ පිළිතුරු පුශ්න පනුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතුය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බවද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බවද සලකන්න.

B කොවස - රචනා (응일 09 음)

මෙම කොටස පුශ්න හයකින් සමන්විත වේ. සම්පූර්ණ පුශ්න පතුයට නියමිත තාලය අවසන් වූ පසු "A" සහ "B" කොටස් එක් පිළිතුරු පතුයක් වන සේ "A" කොටස උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධ්පතිව භාර දෙන්න. පුශ්න පතුයේ B කොටස පමණක් විහාග ශාලාවෙන් පිටනට ගෙන යාමට ඔබට අවසර ඇත. $g = 10 \text{ Nkg}^{-1}$

භෞතික විදනව II සඳහා				
කොටස	පුශ්න අංකය	ලකුණු		
	1			
	2			
A	3			
	4			
	5			
	6			
	7			
	8			
В	9(A)			
	9(B)			
	10(A)			
	10(B)			
එකතුව				

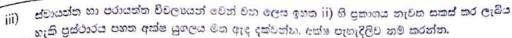

සාන ලකුණු

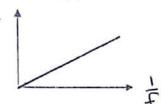
Royal College - Colombo 07

Grade 13 - Physics II/ 2020 August

-	A කොටස – වපුහගත රචනා	
වූහනි	ලුම පුශ්තවලට පිළිතුරු සපයන්න.	
1)	සතේවිය p වන වානය, හරස්කඩ සෝතුඵලය A වන සැසින්නකින්(nozzle) v වේගයෙන් සිරස්ව ඉහලට විදිනු ලබයි.	
	a) තත්පර එකක දී නැසින්නෙන් පිටවන වායු ස්කන්ධය කොපමණ ද?	
	Avp	2
	b) කිරස් පෘෂ්ඨයක් මත වූ එවැනි සර්වසම සිදුරු n සංඛ්‍යාවක් තුලින් ඉහත v වේගයෙන්ම සිරස්ව වාතය පිටකරනු ලබන්නේ යැයි සිතන්න. ඒකාකාර ලෝහ තහඩුවක් මෙම වායු ප්‍රවාහය මත තිරස්ව සමතුලිනව තබා ඇත්තේ වාතය තහඩුවෙහි සට පෘෂ්ඨයේ ගැටීමෙන් ඇතිවන බලය හේතුවෙනි. තහඩුවෙහි ගැටීමෙන් පසු වෘතය සැම දිශාවකට තිරස්ව නියන වේගයෙන් ගමන් කරන්නේ යැයි.	
	උපකල්පනය කර තහඩුවෙහි ස්කන්ධය m සඳහා පුකාශනයක් A , v , p හා n ඇපුරින් ලබා ගනින.	2
	c) රේඛීය වායු පථය යනු (l) රූපයේ පරිදි ඝර්ෂණයෙන් තොර අවකාශයක් ඇති කරන උපකරණයකි. උපකරණය තුලට සම්පීඩකයක් මගින් වෘතය ඇතුළු කරන අතර එම වෘතය නලයෙහි ඉහල ආනත පෘෂ්ඨ දෙක මත ඇති සිදුරු තුලින් ඒකාකාරව පිටවේ. මෙම වෘත පුවාහය මත ආරෝහකයක හැඩැති (^) ලෝහ කහඩුවක් (X) පා කල හැකිය.	
	(X) ආරෝහනයක හැඩැති ලෝහ තහඩුව Y	
	කම්පිඩකුයෙන් පැමිණෙන චාතය (I) රූපය (II) රූපය	
	උපකරණය එක් අවල පාදයක් (R) හා කර කැවීමෙන් උස් පහත් කල හැකි P, Q ඉස්කුරුප්පු පාද දෙකක් මත නංවා ඇත.	
	(i) P, Q ඉස්කුරුප්පු සහ ^ හැඩැති ලෝග තහඩුව පමණක් භාවිත කර පථය තිරස් කරනුයේ කෙසේද? ^ හැඬැති ලෙල් හ කහඩුව උර්ගි මත තබන්න . P, Q විස්කුරුප්පු කළ කිරීම මහින් කහඩුව වංගු . ස්ථරය මත හකර නිදැලව තිබිය හැක .	02
	(ii) නිව්වන්ගේ පලමු නියමය සතාර කිරීමට ඉහත සැකැස්ම යොදා ගන්නේ කෙසේද? කිසිදු බලය ක් ලෙල් හ තහඩුව (^) මත ඉතාලයිලි විට ඒය ක්සලව පුවකී. පුවේගයකින් ගමන් කරයි ඒ කා කර පුවේගයෙන් එල කය වේ.	a aso 6 5
R	Royal College – Colombo 07 2 Grade 13 – Physics 11/ 2020 August	

දින් එය පථය මන පාබා නියලව ඇති දුනු සවිකරන ලද තවත් එවැනිම Y පාවැනි ආරෝහකයක ගැවේ පරිදි දෙනුලක් ලෙනු ආබා නියලව ඇති දුනු සවිකරන ලද තවත් එවැනිම Y පාවැනි ආරෝහකයක ගැවේ	
පරිදි දෙගලක් දෙනු ලැබේ. X හා Y අහර ගැටුම පුතාස්ථ තම ගැටුමෙන් පසු ඒවායේ චලින ස්වභාවය කෙළස් විය යුතුද? A ඒ ක්වර්ම නවතී. B Aගේ පුවේග පයන් එලනය චේ	ත්
e) Y හි ස්තන්ධ X හි ස්තන්ධයට වඩා වැඩිනම ගැටුමෙන් පසු ඒවායේ වලින ස්වභාවයන් කෙසේ විය යු	
A වසු හසට -චල කය වන දී,කර යි ගි. දිරියට A යේ දීවේගයට දීළු දිංවගයකින් -වලකය වේ.	1
f) දැන් X හා Y ව සම්බන්ධ දුනු ඉවත් කර X හි ඉදිරි මුහුණතෙහි ස්ටිකරයක් සවිකරනු ලැබේ. දැන් X නිසලව ඇති සර්වසම Y වේග v වේගයෙන් පුක්සේපණය කරනු ලැබේ.	ς,
i) X හා Y සර්වසම නම හා ගැටුමෙන් පසු ඒවා සංයුක්ත වේ නම සංයුක්තයේ ආරම්භක පුවේගය කුමා විය යුතුද?	02
ii) ඉහත කිුයාවලියේ දී පද්ධතියේ මුළු යාන්තික ශක්තිය සංස්ථිකව පවතීදයි හේතු සහිනව පෙන්ව.	
	62_
(පැ.යු. ආලෝක සංවේදී පරිපරයක් හා ආසන්ත මිලි තක්පරයට වේලාව කියවිය හැනි සංබනංක බරලෝසුවක් මගින් ආරෝහකයට නිශ්චිත දුරක් යාමව හතුවන කාලය ඉතා නිවැරදිව මැතිය හැකිය.)	
g) දන් X හි දුනු ඉවත් කර එකිනෙකෙහි දුනු තියනය K වන සර්වසම සැහැල්ලු හෙලික්සිය දුනු දෙකක් X හි ඉහළ දෙකෙළවරට යා කර ඒවායෙහි නිදහස් අගු උපකරණයේ දෙකෙළවරට (III) රූපයේ පරිදි යා කරනු ලැබේ. දන් X ආරෝහකය පථය මත තිරස් සරල අනුවර්තිය වලිනයක යොදවනු ලැබේ. X හි ස්කන්ධය m නම් දෝලනයේ ආවර්ත කාලය T සඳහා පුකාශනයක් ලියා දක්වන්න.	1
(III) රුපය දිනි	
T= 25 m	02
h) සංවෘත තුටිරයක ඇති විදුලි මෝටරයක් මගින් කිුිියාත්මක වන සම්පීඩකය මගින් වාතය සපයනු ලැබේ. නියත වේගයෙන් වාතය පිටකරන නමුත් දිගු වේලාවක් උපකරණය කිුිියාකරවීමේ දී ආරෝහක පථයේ පෘෂ්ඨයේ ගැටීමට පෙළඹේ. මෙයට හේතුව කුමක් ද?	
මෝටරය මගින් ජනතය වන කාපය කිසා වායු ස්වර උෂ්ණත්වය රි3ූ යන වූතර එහි සහත්වය දසුවේ. ලාව්ට එසුවීමේ බලය පුසුවේ.	0
Royal College – Colombo 07 3 Grade 13 – Physics II/ 2020 August	20




	ii)	ලබාගත් මිනුම් ()ලට අදාල පාඨාංක පිළිදෙ	ිලින් පහත දක්වා ඇත. ඒවායේ ඒකක සම්මත ඒකක වේ.	
		ම් නුම	වාර්ත ක ස		
		(1)	100 × 10 ⁻³		
		(2)	220 × 10 ⁻³		
		(3)	30	=	
		(4)	40	X.	
		(5)	720 ×10 ⁻³		
		(3)	720 × 10 ×		
	iii)	ී එමගින් ලෝහ	ය් ව්.තා.ධා. ගණනය කරා 0) × 10 ³ × 4200	0 (40-30) + 100 ×10 ³ ×42∞ (40- 220)×10 ³ × 5×(1∞-40)	-61 30) 02
c)	ඉහප	ා වි. නා. ධා. සො	යන ලද ලෝහ බෝල සම)ග ඉහත කැලරිමීටරය තවත් දුවයක වී. තා. ධා. සෙවීමට	
				න ලද ලෝහ බෝල දුවය සමග මිනු කළ විට දුවයේ	
			ත්වය 45 °C දක්වා ඉහල		
	දුවය	සමග කැලරිමීටර	්යේ ස්කන්ධය = 252g		- 1
	දුවල	ය් වී. තා. ධා සො	යන්ත.	-2	
	5	00 ×10 ³ >	(182 (100-4	$(252-100)\times 10^3\times 5(45-30)$) .73
				· (220 - 100) × 400 × (45-30)×	
			\$ = 1871.3	3 Jr@16-1	02
d)	උය්.	ණුත්වයට <mark>රත්කර</mark> අ	ගතහොත් පරීක්ෂණයේ දී 🤅	දෙනන් ඇටවුම වෙනුවට, ඒවා ජල බඳුනක ගිල්වා අදාල මතුවිය හැකි ගැටලු දෙනක් සඳහන් කරන්න.	
	1) . 2) .	ලෝහ ලෙ මොහ	බා්ල, සමග ග්ලවල උෂ් ^ද	ජලයද කැලරිම්වරයට ජකතු එය නො ඩැලිසුව යෙර ට 001 ඩරික්ක	000 000
e)	ලව:	i්හයක වී.තා.ධා. ෙ නුවට පොල්තෙල් න්ත.	සවීමට මිශුණ කුමය යොදා භාවිතා කිරීම වාසිදායකද?	ාගන්නා පරීක්ෂණයක දී කැලරි මීටරයට යොදන ජලය නැතහොත් අවාසිදායක ද? පිළිතුර සාධාරණීකරණය	- *=
	3	රාසි දූ යැතය			60
	<u></u>	පාල් කෙල් ප්රාත්ච	වල වී. කා∙ ධ දැන් තරට ක්	ා දිඩු බැවින් පැ ලකිය පුතු ලබාගත හැක ·	<i></i>
					20
				ය හා කම්පන දිග අතර සම්බන්ධතාව සොයා බැලීමට ලය සහ සැහැල්ලු කඩාදාසි ආරෝහකයක් ඔබට සපයා ඇත.	
a,	i)			ඇමසන විට තටගනු ලබන තරංග ආකාර නම් කරන්න.	02
		l. කම්බිය මත	. ෟතිර්යයක්	-ස්ථාවර	
		2. වාතයේ	. වුන්වාරාම		

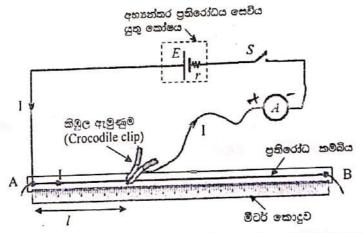
c)

3)

li)	5 A-18
	දී ඇත සහසුල් කව්වලයෙන් අඩුම සංඛ්ෂාතය හා වැඩීම සංඛ්ෂාතය ඇති පුද්ගල් පෙළ්
1	දී ඇති සරසුල් කට්ටලයෙන් අඩුම සංඛ්ෂානය හා වැඩීම සංඛ්ෂානය ඇති සරසුල් තෝරා ගැනීමට ඔබට නියමට ඇත. භෞතික මාන පමණක් සැලකිල්ලට ගෙන එම සරසුල් තෝරා ගන්නේ කෙසේද?
1	(C. CC - C
	- 30 50 DA
1	Det 0 - 0)30 500 DO
	විදුන්ම - භාහා දැර පුළු
· iii)	දී ඇති පියලුම සරසුල් සඳහා මෙම ධ්වනිමාන කම්බියෙන් අනුනාද දිගවල් ලබා ගත හැකි දැයි ස්ථිර
	කර ගන්නේ ලකයේග
	200
	100 CO
	දිතිව සරසුලට දුනුනාද දිගක් ලබා ගැනීව
iv)	iii) කොටසට අනුව දි ඇති සියලුම සරසුල් සඳහා අනුනාද දිග ලබා ගත නොහැකි වේ නම් ඔබ
	පරීක්ණය සැකැස්මෙහි සිදු කළ යුතු / කළ හැකි වෙනස්කම් සදහන් කරන්න.
	ස්ද්ය (යමෙන් සිදු කළ යුතු / කළ හැකි වෙනස්කුම් සදහන් කරන්න
	රාර්ග මගින් පිටුවෙස් වෙන එ මෙන
	්ට න වෙන ක් ක්රිම් රාහන් ක්රිම් රාහන් කරන්න. ධ්ව න වෙන ක් ක්රිම් රාහන් වෙන න් ක්රීම් රාහන් වෙන න්
250	6,930 (0,202)
v)	
	සංබනාතය වැඩිම සරසුල සඳහා මූලික තානය සඳහා අනුතාද දිග ලබා ගැනීම සිදු කරන ආකාරය
	කෙටියෙන් පියවර වශයෙන් ඉදිරිපත් කරන්න.
	निया है जिल्ह
	සෝනු වැතර වර්නරය වුණු කිරීම.
	කළදිසි දිය ප්රථානය වැඩින් කිශීම ප්රථාල කම්වනය කර විය
	ප්රස්ල අපයෙක්ක ලැදින් කිම්ම යුරුල් අතර දිදු වර්න කිම්කර වැන්වේ විස්ත්රීම යුරුල් සිය කර විදු කිම්ම යුරුල් විස්ත්රීම යුරුල් විදු කිම්ම වැන්වේ විස්ත්රීම යුරුල් විදු කිම්ම වැන්වේ විදු කිම්ම වැන්වේ විදු කිම්ම වැන්වේ වැන්වෙන් වැන්වේ වැන්වෙන්
	ම ල ගතුරය කුමරයන් වැඩියල්ම
	අතර රහකය ලාක්තික ලක්කාරම.
	දෝන දුකර දිග විවර රූල මගින් මැල්ව .
	000 000 000 000 000 000 000 000 000 00
	<u> </u>
<i>b</i>)	
	A
	B
	A
	M/kg
	(COC (COC) Armodes MI
٤	රුපයේ දැක්වෙන ආකාරයට M kg භාරයක් යෙදීමෙන් ධීවනිමාන කම්බිය ආකතියකට ලක් කර ඇත.
ı) E	මේකුව හා කුජුලිය ලකුර යා
•	නාවීම සිදුවිය හැකිය. මෙවැනි තෝවසේ ආතතිය භාරය නිසා ඇති වන ඉහත අගයට සමාන කැර්තිය පුරුවිය දැලට වල කෙනැකි කියා මාර්ග දෙකක් ලියා දක්වන්න. ජීරිප්ට පුරුවිය දැල්ව වල .
	ක ප්රතිය දුරිප් දුර්වයක් මග හැරවීමට ගත හැකි කියා මාද්ය වන මහත අගයට සමාන
	ත්තුවේ සාක්ෂ Tarest වේ දීර ස්වට වන පරිදි
- 0 - 1 - 1	20 Jego 655 00 00 00 00 00 00 00 00 00 00 00 00 0
	ලස්තු වල දුර සහව බන ලේ ගොපස් දිග අඩුකිරි
225	390 583 365
10 to	6 - 40000 1 C 000001 Rd-5
q	වුනාද දිග / ද නම් f හි අගය සඳහා පුකාශණයක් ලියා දක්වන්න.

	4 - 1 7

	2 VITTP
al College C	
al College - Co	6 Grade 12 pt
	Grade 13 - Physics II/ 2020 August


iv) b)iii) හි පුස්ථාරයේ අනුතුමණය 250 ms ලෙස ලැබේ යැයි ද කම්බියේ විශ්කම්භය 0.1 mm ද වේ තුම් එම කම්බියේ හනත්වය (ρ) ගණනය කරන්න. (π = 3 ලෙස සලක්න්න)

		_		4, -3
1000020	1 T	550-	18.75	0-10 Kam
\mathcal{M}	=	25021	18.70	
	JTMP		3×(154)	اا
	7.21	N N	- (10)	

v) ඉගත iii) හි ප්‍රස්තාවය ධ්වතිමාන කළුබිය කුමාංකනය කිරීමට යොදාගත්තේ යැයි සලකන්න. නොදන්න සංඛනත ඇති සරසුල් දෙකක් සඳහා අනුතාද දිග දෙකක් ලබා ගත්වීට එම දිගවල් වල අන්තරය විශාල සංඛනතය ඇති සරසුලෙහි අනුතාද දිගට දරණ අනුපාතය 0.2 ක් වී නම් කුඩා සංඛනතය ඇති සරසුලේ සංඛනතය 500 Hz වන විට අනෙක් සරසුලෙහි සංඛනතය සොයන්න.

	fix + f	$\sim \frac{1}{4}$	f1 = 1	2
***************************************	£1	(2	f2 1	1 (1 -
	li-11 =0-	<u> . la</u> .	<u>-1.2</u> 4	_ = 600 HZ
	<u> </u>	LI:		

කෝෂයක අභාන්තර ප්‍රතිරෝධය සෙවීමට සැලසුම් කරන ලද පරිපථයක් පහත දැක්වේ.

අභාගේතර පුතිරෝධය සෙවිය යුතු කෝෂය E ලෙස දක්වා ඇත. E යනු එම කෝෂයේ විද්යුත් ගාමක බලය වන අතර එහි අභාගේතර පුතිරෝධය I වේ. (A) ඇම්වරයක් වන අතර එහි අභාගේතර පුතිරෝධය නොසලකා හැරිය හැකි තරම් කුඩා වේ. S යනු වකන යතුරකි. I පුතිරෝධ කම්බියේ හරස්කඩ විෂ්කම්භය I ද පුතිරෝධකතාවය I ද වේ. කිඹුල ඇමුණුම මගින් I පුතිරෝධ කම්බියේ I දිගක් පරිපථයට සම්බන්ධ කර ඇතිවිට පරිපථය තුළින් I ධාරාවක් ගලා යයි.

02

02

වා සංචෘත පරිපථයක් සඳහා ඉදිරිපත් කර ඇති කර්ඩොෆ්ගේ දෙවන නියමය ප්‍රකාශනයක් ලෙස ලියා එහි ඇති සියලුම පද හඳුන්වන්න.		
DE ZZIR	. 0.3	3
25, 218		1
b) 🛕 ඇමීවරයෙහි අහු (+) හා (-) ලෙස ඉහත රුපය මත සලකුණු කරන්න.	01)
c) AB කම්බියේ / දිගක පුතිරෝධය (R) සඳහා පුතායනයක් ρ, / හා d ඇපුරෙන් ගොඩනගන්න.		
$R = \frac{91}{4} = \frac{491}{\pi d^2}$		
11d2	02	1
d) ඉහත (a) හි සඳහන් නියමය යොදා ගනිමින් E. r. o. d. l හා l අතර සම්බන්ධනාවයක් නොව ගැන්න		
$E = I \left[\frac{4f!}{\pi d^2} + V \right]$		
πd^2	02	
c) 7 පෙරීමට පුස්තාරික කුමයක් යොදා ගැනීමට අපේස්වකය විවෘතයක් සිවැන්ව කාලය යම්මය් වෙ		
(ತ) ಆ ಅದುವರುವ ಶಾಲರದ ದಾದವರು.		1
$\frac{1}{I} = \left(\frac{49}{\pi d^2 E}\right)l + \frac{1}{E}$	02	
CIA-EJ E	0-2	
f) ස්වායාත්ත හා පරායත්ත වීවලායන් හඳුන්වන්න		
ස්වයාක්ත විචලපය :	١,	
පරායක්ත විවලාන :	01)
g) පරීක්ෂණය සඳහා අපේක්ෂික පුස්ථාරය සහත අක්ෂ පද්ධතියෙහි ඇඳ ඒකක සහිතව අක්ෂ හම කරන්න.	0)	1
(A) රුප් ප්රධානයේ අදද ඒකක සහිතව අක්ෂ නම කරන්න.		
	03	
h) ordered among a limit		
m අනුවානය විකත සහිතව පොයන්න.		
$\frac{c}{m} = \frac{2}{2} = 2 A^{-1} A^{-1}$	01	1
i) AP mes a mass of ma	- ,	
i) AB සම්බියේ $\rho = 2.25 \times 10^{-6} \Omega m$ ද $d = 1.5 \times 10^{-3} m$ ද වේ නම් පෝෂයේ අභාවන්නර පුනිරෝධය (r)		
= TIPY. 2 = 3×1.5×15337		
M 4x225×106	09	,
j) ඉහත පෝෂය සමග සවස් එවැනිම පෝෂ 25 සම		.'
j) ඉහත තෝපය සමග තවත් එවැනිම තෝප 2ක් සමාන්තරගතුව සවිතර පරීක්ෂණය සිදු කළහොත් ලැබීමට අපේක්ෂිත පුස්තාරය ඉහත අත්ප පද්ධතියෙහිම ඇඳ එය X ලෙස නම් කරන්න.	59	
cval College - Colomba 07		3/1
Grade 13 - Physics II/ 2020 August	20	