

Name:	 Index No. :	Grade:
Name and Address of the Owner, or the Owner,		

- This paper consists of 08 pages.
- Answer all the questions.
- Use of calculators is not allowed.
- Write your Index Number in the space provided in the answer sheet.
- Follow the instructions given on the back of the answer sheet carefully.
- In each of the questions 1 to 30, pick one of the alternatives from (1), (2), (3), (4), (5) which is
 correct or most appropriate and mark your response on the answer sheet with a cross (X) in
 accordance with the instructions given on the back of the answer sheet.

Universal gas constant R = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Avogadro constant N_A = $6.022 \times 10^{23} \text{ mol}^{-1}$ Planck's constant h = $6.626 \times 10^{-24} \text{ J s}$ Velocity of light C = $3 \times 10^{2} \text{ m s}^{-1}$

Answer all the questions.

- O1) A sample of H atoms, excited by an electric method contains electrons distributed in first six energy levels. Which of the following gives the number of different wave lengths belongs to Lyman, Balmer and Paschan series respectively, according to the Bohr theory?
 - 1) 3, 5, 4

2) 2, 4, 6

3) 5, 2, 3

4) 5, 4, 3

- 5) 6, 4, 2
- 02) Which of the following reactions form a molecule which acts as a Lewis acid and has a zero dipole moment.?
 - 1) $S + Cl_2 \longrightarrow SCl_2$
- 2) 2 Al + 3 Cl₂ ----- 2AlCl₃
- 3) 2P + 3Cl₂ → 3PCl₃
- 4) Xe + F₂ ---- XeF₂
- 5) Cl₂ + 3F₂ ----→2ClF₃
- 03) Which of the following pairs of solutions gives the same colour upon mixing with each other?
 - 1) FeCl₃(aq) + conc. HCl(aq) and CuSO₄(aq) + conc. HCl(aq)
 - 2) NiCl₂ (aq) + conc. HCl(aq) and CuSO₄(aq) + conc. HCl(aq)
 - 3) Cr₂(SO₄)₃(aq) + NH₄OH and NiSO₄(aq) + NH₄OH
 - 4) FeCl₃(aq) + NH₄OH(aq) and MnSO₄(aq) + conc. HCl(aq)
 - 5) FeCl₃(aq) + NH₄SCN(aq) and NiSO₄(aq) + KCN(aq)
- 04) Which of the following molecules / ions have the same shape,
 - 1) CIF₃; BF₃

- 2) PCl₃; BCl₃
- 3) SOCI2; NH3

4) H₂O⁺; NH;

5) NO; (SO;

103)	Which of the following str 1) The radius of K' is les	stements is correct? s than that of Na*.			
	 Addition of an electron 	n to a Cl atom is easie	s than that of N.		
	3) According to the Pauli	ng's scalo, Sulfur is r	nore electronegative	than Nitrogens.	
	 The first ionization en- 	ergy of S is greater th	an that of P.		
	 The radius of O² is g 	rester than that of N	to.		
06)	The solubility product of Fe ⁵⁺ ions of 0.05 moldm units is,	Fo(OH) ₂ at 25 °C solution of NaOH	is 1 x 10 ⁻⁴⁵ mol ³ which is saturated	dm ⁻⁸ . The concent with Fe(OH) ₂ in	motion of
	1) 2 x 10 ⁻⁴⁵	2) 1 x 10 ⁻⁴⁸		3) 2 x 10 ⁻¹⁴	
	4) 4 x 10 ⁻¹⁴	5) 4 x 10 ⁻⁴³		23 2 X 10	
	7) 42.10	3) 4 x 10			
07)	Which of the following sta 1) Phenol shows nucleop 2) CH ₅ OCH ₃ is more vola	hilic substitution read	tions.		
	3) CH ₃ - CH = CH - CH ₀		dehyde.		
	4) CH ₂ = CH - CH ₂ Cl sho		*		
	Benzene does not dece	lurize bromine water			
08)	Which of the following co	mpounds forms two	sases when treated v	eith concentrated. I	LSO. ?
			KCI 4) NH.		
(09)	12.5 g sample of a mixture CO ₂ produced in this read percentage of K ₂ CO ₃ in the	ction at standard temp	cerature and pressur		
	1) 56 2) 44	3) 40	4) 35	5) 6	5
\$\cdot\)					
10)	Which of the following co 1) CH ₃ CH ₂ Cl 2) (CH ₃ CH = CH ₂		et.? CH _e OH	
	4) CH ₃ OCH ₃ 5) ((CH ₃) ₃ CCl			
333	The products formed by re	dustion of VMnO.	under omanete kiel.	and the area	
11)	•	2) MnO ₂ and O		InO ₄ and H ₂ O	
	4) K ₂ MnO ₄ and O ₂	-		morand tro	
	4) Remodalia 02	of minor and m	(OL)		
12)	Which of the following aq	ueous solutions give	s sulfur (S) as a prov	iuct when treated w	ich 5020
	1) FeCl ₃ 2) H ₂ S	3) KMnO		5) Pb(NO ₃) ₂	
**					
13)	A sample of 9.60 mg of p	oure MgSO4 was dr	solved in distilled i	rater to prepare an	aqueeus
	solution of 500.0 cm ³ , in		the content of N	ig tons of the so	and module
	$mgdm^{-3}$ units is, $(Mg = 2$			x 10 ⁻⁴ 5) 8	1. D. 18
1.749	1) 3.84 2) 1.92	3) 0.96	4) 1,6:	(107 5) 8	3x 10
14)	The equilibrium constant of 5.0 x 10 ²⁰ mol ⁻⁴ dm ¹² .	f the equilibrium M	(aq) + 4CI (aq) ==	=[MOL] ¹ [MOM]=	25 °C is
	50.0 cm ³ of an aqueous	solution of 0.4 mal	day Wan a	mixed with 50.0	om ³ of
	4 mol dm ⁻³ solution of Cl	ione What is the an	All the acceptance	The time works	envenione
	1) 0.2 2) 0.4	3) 0.04	4) 0.02		
Tank V				No.	Mr. Strait

15)	Consider the follow $X + H^{\dagger}(aq) + NO$	$(aa) + PbO_2$	→ pu	rple coloured solu	tion + other products
	purple solution + co	one.HCl	pt + other produc	ellow gas + onle	r products
	1) CuSO ₄	2) MnSO ₄	3) FeSO ₄	4) ZnSO ₃	5) Cr ₂ (SO ₄) ₃
16)	Which of the follow	wing pairs of c	ations can be dis	tinguished between	en them using a dilute
	aqueous solution of 1) Cd ²⁺ ; Zn ²⁺ 4) Zn ²⁺ ; Pb ²⁺	'2) Cd ² 5) Ca ²	, Mg ²⁺ , Mg ²⁺	3) A	I ³⁺ ; Zn ²⁺
17)	Which of the follow	ing species can n	ot acts as a nucle	ophile?	
	1) C ₂ H ₅ O	2) CH	$_3$ Mg $_3$	3) C	H₃CH₂Cl
	4) CH ₃ NH ₂	5) ŇH	₂ OH		
18)	Which of the follow H				
==-	1) CH ₃	2) CH	$_2 = CH - \check{C}H_2$	3) Cl	$H_2 = CH - \overset{\oplus}{C} - CH_3$
	4) $CH_2 = C - C - C$ CH_3 $CH_2 = C - C - C$ CH_3	CH ₃ 5) CH	CH ₃ 3 − C ⊕ CH ₂		
19)	The mole fraction of At this temperature 1) 1.8 x 10 ² Pa 4) 1.2 10 ² Pa	$P_A^0 = 3P_B^0$. Wha 2) 1.8	lution of A and E t is the total press x 10 ³ Pa 10 ³ Pa	sure of this system	ular temperature is 0.4. if $P_A^0 = 3 \times 10^3 Pa$? $6 \cdot 10^3 Pa$
20)	water milky. This g	as does not deco ipitate when dis	lourise an aqueou solved in HNO	us solution of KM followed by addit compound A could be	A STATE OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERT
21)	water decreased from solution was 4 mo mass of X? (H = 1	s process of disc om 1.03925 x I dm ⁻³ and the d	solution of X, it 10 ⁴ Pa to 8.314	was observed that	the vapour pressure of acentration of X in this cm ⁻³ . What is the molar
	1) 104 g mol ⁻¹ 4) 208 g mol ⁻¹		2) 52 g mol ⁻¹		3) 26 g mol ⁻¹
	-) 200 g mor		5) 68 g mol ⁻¹		

der the following tests and observations	legarding air organi
Test	Observation
Addition of ammonical Cu ₂ Cl ₂	Brown precipitate
Addition of Brady's reagent	Orange precipitate Decolourization of the Brown colour
Addition of Br ₂	Decolourization of the
֡	Test Addition of ammonical Cu ₂ Cl ₂ Addition of Brady's reagent

Which of the following compound is correct according to the tests and observations given above?

1)
$$CH_3 - C \equiv C - H$$

$$CH_2-OH$$

$$C \equiv C-H$$

5)
$$C \equiv C - H$$

OCH₃

Which of the following compounds does not have a dipole moment.?

Cl
$$CH_3$$

$$CH_3 CH_3$$

$$CH_3 Cl$$

$$Cl \qquad Cl \qquad Cl \qquad H \qquad H$$

$$\begin{array}{ccc}
H - O & Cl \\
4) & C = C \\
H & H
\end{array}$$

$$CH_3$$
— CH_3

- 1) methoxy-4-nitro-4-hydroxypent-2-enoate
- 2) methyl 4-nitro-4-hydroxy-2-oxopentanoate
- 3) methyl 4-hydroxy-4-nitropent-2-enoate
- 4) methyl 4-hydroxy-4-nitropentenoate
- 5) 4-nitro-4-hydroxymethoxypentenoate
- 25) The IUPAC name of $[Co (CN)_2 Cl_2(NO)_2]^{2-}$ is,
 - 1) dichloridodicyanidodinitrosylcobaltate(II) ion
 - 2) dicyanidodichloridodinitrosylcobaltate(III) ion
 - 3) dicyanidodichlorodinitritocobaltate(II) ion
 - 4) dichloridodicyanodinitritocobaltate(II) ion
 - 5) dicyanidodichlorodinitrocobaltate(IV) ion

26) The average speed of an ideal gas at 27°C is 0.8 ms⁻¹. The average speed at 627°C is (in ms⁻¹ units)

1) 0.24

2) 1,92

3) 2.40

4) 1.38

5) 1.83

- 27) Which of the following statements is false?
 - 1) Dilute acids can be used to distinguish between SO_3^{2-} and SO_4^{2-} ions.
 - 2) Cl₂/CCl₄ can not be used to distinguish between Br and Cl ions.
 - 3) acids can be used to distinguish between CO_3^{2-} and $S_2O_3^{2-}$ ions.
 - 4) H_2SO_4 can be used to distinguish between NO_2^- and NO_3^- ions.
 - 5) $H^+/KMnO_4$ can be used to distinguish between S^{2-} and CO_3^{2-} ions.
- 28) Which of the following processes does not take place?

1)
$$OCOCH_3$$
 $OCOCH_3$ O

2)
$$CH_3Cl$$
 CH_3Cl CH_3 CH_3

4)
$$CH_2 = CH - CH_2 - Cl \xrightarrow{KOH(aq)} CH_2 = CH - CH_2 OH$$

5)
$$OH$$
 OH OH

$$H_2SO_4$$
 $COOH$

29) Consider the following enthalpy changes

$$CH_3 - CH_3(g) \longrightarrow CH_3 - \dot{C} H_2(g) + \dot{H}_{(g)}; \Delta \dot{H} = +412 \text{ kJ mol}^{-1}$$

$$CH_3 - CH_2(g) \longrightarrow CH_2 = CH_2 + H(g)$$
; $\Delta H = +168 \text{ kJ mol}^{-1}$
What is the enthalpy change in kJmol⁻¹ of the following reaction

$$2CH_3 - \dot{C}H_2(g) \longrightarrow CH_3 - CH_3(g) + CH_2 = CH_2(g)$$

1) -580 * 2) -244

30)		er the following d g) $\Longrightarrow N_2(g)$	lissociation reaction + 3 H ₂ (g)	n NH ₃ (g).		
	The equation moles.	uilibrium mixtur What is the initium is 100?		1018) 01 14113, 11	pressure contains 20 the total number (4) 20	0% NH ₃ (g) by of moles at the 5) 100
The	instructio	ons for the questio	ns 31 to 40 are give	en below.		
		S	Summary of above in	structions	5	
	1	2	3	4		or
	(a) and correct	Only (b) and (c) correct	Only (c) and (d) correct	Only (d) and (a) correct	combination of responses correct	
31)	Which a) C ₂ I	of the following s	statement / stateme	nts is/are true? s more easily cor	mpared to C_2H_2 .	
	(СООН	CH ₃ I when o is ox	r I		
		as well as the reaction be mination occurs.			I solution of FeCl ₃	ion as well as
32)	Which a) NCl	4.5	eompounds) (acto) SO ₂	a bleaching agent c) PCl ₅	t in water. d) KMnO ₄	
33)	a) Cl ₂ b) NO	+ KOH ———————————————————————————————————	→ products	proportionation.	}	
34)		ation of H ₂ O)	g species form t	c) KHCO ₃	oducts upon heating d) Ag ₂ CO ₃	ng (ignore the
35)	a) Grapb) Iodir	hite is a giant three ne is a homoatomi		ice.		
i describ	c) Ionic d) Aton stron	nic latties do not	enduct electricity in tend to get disso	n solid state as w lved as the cova	vell as in liquid state alent bonds exist in Scanned by	them are very y CamScanner

- 30) Which of the following is/are incorrect (X=Cl/Br/l)
 - a) $R C \equiv C H + RMgX$
- $R-C \equiv C-R + MgXH$
- b) $R X + RNH_2 \longrightarrow R_4N^+X^- + HX$
- c) $RCOR + RNH_2 \longrightarrow R_2C=N-R + H_2O$

d) ROH + RMgX

- RH + ROMgX
- 37) Which of the following is/are property / properties of primary standards?
 - a) Stable for a longer period.
 - b) High purity.
 - c) High volatility
 - d) Absorption of water vapour or CO2 in atmosphere.
- 38) Which of the following mechanistic step/s is/are not correct.
 - a) $CH_3 CH CH_2 \xrightarrow{\Theta} OH \longrightarrow CH_3 CH CH_2 \\ Br OH$
 - H-C C-Br
 - $CH_3 CH_3 \longrightarrow CH_3 C-CN + CI^+$ $CH_3 CH_3 \longrightarrow CH_3 C-CN + CI^+$
 - d)
- 39) $CH = CH - CH_2 - OH$ COCH₃

Which of the following is/are most accurate regarding the above molecule?

- a) It reacts with dilute KOH
- b) It shows diastereomerism.
- It gives a silver mirror with ammonical silver nitrate.
- d) It forms a dicarboxylic acid on oxidation under strong conditions.
- 40) Which of the following is/are true regarding the equilibrium constant?
 - a) the equilibrium constant changes when the concentrations of reactants or products of a system in an equilibrium is changed.
 - b) the equilibrium constant increases when temperature is increased of a reaction whose forward reaction is endothermic.
 - c) the equilibrium constant can be changed only by temperature.
 - d) the equilibrium constant changes when the pressure of a gaseous system is changed at constant temperature.

	Royal College – Colom Ro	yal College- Colombo 07 -Co	කාළම 67 රාජසිය විදුකලය lombo 67 Royal College
	Fi	irst Term Test November 2016 Grade 13	
A COMPANY	රසායන විදහව II Chemistry II	02 E II	පැය තුනයි Three hours

Use of calculators is not allowed.

* Universal gas constant R = $8.314 \text{ JK}^{-1} \text{ mol}^{-1}$ * Avogadro constant N_A = $6.022 \times 10^{23} \text{ mol}^{-1}$ * Planc constant h = $6.626 \times 10^{-34} \text{ Js}$ * Velocity of light C = $3.0 \times 10^8 \text{ ms}^{-1}$

Part A – Structured Essay (pages 2 – 4)

Answer all the questions on the question paper itself.

* Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected.

Part B Essay (pages 10-15)

- * At the end of the time allotted for this paper, tie the answers to the three Parts A, B, C together so that Part A is on top and hand them over to the Supervisor.
- * You are permitted to remove only Parts B and C of the question paper from the Examination Hall.

For Examiner's Use Only

Response	first statement	second statement
(1)	True	true and correctly explain the 1 st statement
(2)	True	true, but does not explain the 1 st statement correctly
(3)	True	False
(4)	False	True
(5)	False	False

	first statement	second statement
41)	The [Cu(NH ₃) ₂] ⁺ ion undergoes oxidation in air.	The geometry of [Cu(NH ₃) ₄] ²⁺ complex ion is square planar.
42)	AgCl gets precipitated when an aqueous solution of [Ag(NH ₂) ₂]Cl is diluted with distilled water.	The position of the equilibrium, of $[Ag(NH_3)_2]^{\dagger} \rightleftharpoons Ag^{\dagger}(aq) + 2NH_3(aq)$ is shifted towards products side when the volume is increased.
43)	NH ₃ gas can be liquefied at room temperature by compression.	The critical temperature of NH ₃ gas is greater than that of room temperature.
44)	When a solution of NH ₄ SCN is added after Fe ²⁺ ions are exposed to air for a while; it turns red.	[Fe(H ₂ O) ₆] ³⁺ ion remains stable in air.
45)	The hydration enthalpy of Li ⁺ (g) ions is less than that of the Na ⁺ (g) ion.	Na ⁺ has the configuration similar to Ar.
46)	Esters are formed by phenol with carboxylic acids in presence of acid catalysts.	Phenol shows acidic properties and liberates CO ₂ when treated with Na ₂ CO ₃ .
47)	The - NHCOCH ₃ acts as a meta directing group when bonded to benzene.	-CONHCH decreases the electron density of the aromatic ring.
48)	Dipole dipole interaction are present between the molecules of $CH_2 = CHCl$.	CH ₂ = CHCl is a polar molecule.
19)	The compressibility factor(Z) is a measure of the ideal behavior of a gas.	Only pressure, volume and the amount of the substance affect for the behaviour of a gas.
0)	Br acts as an electrophile during the bromination of alkenes.	An induced dipole of the Br_2 molecule is created by the π electron cloud of Alkene.

			Structured Essa	y.	
Answei	r all	the questions on this pap	er itself.		-
1) a)	Arr	range the following species in asc		property mentioned	within brackets
	• • •	$F_{2(g)}; Br_{2(g)}, I_{2(g)}; Cl_{2(g)}$ (Colo	ur intensity)	1 71 21	***************************************
	ii)	He, Ne, Xe, Ar (Boiling point			
	iii)	XeF ₂ , XeF ₆ , XeF ₄ (Oxidation			
	iv)	N = N, $O = O$, $C - C$, $C = C$ (B			
	v)	Zn, Cr, V, Sc (Melting point)			
b)	Ato	omic skeletal of methylthiocyanate	e (CH₃SCN) is give	en bellow.	
, Jane		C-S-C-N			
	i)	Draw the most acceptable Lewis	s structure of this m	olecule.	
anno 3 m					
				W.	41-247
	ii)	Draw three possible resonance st	ructures for mthylt	hiocyanate.	
			••••••		
i	ii) (Considering the structure drawn	in (b) (i) above, fill	the table given bell	ow.
		$C^4 - S^3 - C^2 - N^1$	7 1 2 2	and the second	A 2
		D N CYCEDD!	C ⁴	S ³	U
		i) No. of VSEPR pairs			
	i	ii) Electron pair geometry			
	i	iii) Shape	grant agetati		

Hybridization

iv)

	iv)	lder in th	ntify the atomic/	hybrid orbitals in re drawn in part (avolved in the for	mation of th	ne following	σ bonds
						NI		
5.			$C^2 - N^1$					
			$S^3 - C^2$					
		iii)	$C^4 - S^3$	C ⁴		S ³		
c)	W	rite wh	nether true or fal	se in front of each	h statement given	bellow.		
	i)	Оху	gen does not po	sses positive oxid	lation states.			
	ii)	H-	O – H bond ang	ele of H ₂ O is grea	ter than H – S – F	H bond angle	e of H ₂ S.	
	iii)) Firs	t ionization ene	rgy of an elemen	it depends only o	n its atomic	radious and	nuclear
	įv)	Mel	ting point of mo	noclinic sulfur is	higher than that o	of rhombic s	ulfur.	
	v)	The	complex [Ni(H ₂	$(O)_6$] ²⁺ gives a blue	ue coloured compl	lex with con	c. ammonia.	
2) a)	in v to s Y f	water. sun lig	This acid evolve that. This acid evolve that. an oxide of the first that the fi	es a reddish brov	, belong to the sa f X, forms a mon wn coloured gas, on queous solution pr	o basic stroi	ng acid by dis	ssolving expose
	***	2 81 40	s an orange con	oured precipitate rbidity with wate	when H ₂ S gas is	passed thro	ugh it. Chloric	de of Y
	i)		tify the element					
	ii)			ation numbers of	Y.			
	iii)	Write	e the balanced of tioned in the abo	chemical equation	n for the hydroly	sis reaction	of the chlori	de of Y
	iv)	Hydr	rolysis of the c tion for the rele	hloride of X giv	es an acid and a	a base. Writ	e balanced c	hemical
					********************		*************	

	in the laboratory.
	шынын какан какан какан какан какан какан какан кан
vi)	Write balanced chemical equation for the dissociation of the acid of X in (v) above in the presence of sun light.
A, I	B and C are some properties of three elements out of Na, Mg, Al, Si and P in the third od. Answer the following questions based on these observations.
*	Melting points of the oxide and the chloride of A are very high. The oxide and the chloride are soluble in water.
*	The oxide and the chloride, derived from the highest oxidation state of B give acidic solutions dissolving in water.
*	Oxide formed by the element C is a solid and shows acidic property. This oxide is insoluble in water.
i)	Identify the elements A, B and C.
	A
ii)	Explain reasons for the higher melting point of the oxide of C.
iii)	Write the elements A, B, C in ascending order of the electronegativity.
iv)	State the acidic/basic nature of the hydroxides derived from the highest oxidation numbers of A and B.
v)	Comment on storage (how to store) of the elements A, B and C in the laboratory.

-			
	c)	Foll	owing experiments were done for a solution of ions formed by 3d transition element.
		*	Conc. HNO ₃ followed by a mixture of NH ₄ Cl and NH ₄ OH were added:-
		ı	A brown coloured precipitate was obtained.
		*	Shaken with NH ₄ SCN solution:- The solution turned red. Reacted with acidified KMnO ₄ :- Brown coloured solution was obtained.
		i)	Identify the ion of X ⁿ⁺ .
		ii)	What is the complex responsible for the red coloured solution obtained by the reaction with NH ₄ SCN.
		iii)	Write the balanced ionic equation for the reaction with KMnO ₄ in the acidic medium.
03)	a)	Two	o volatile liquids A and B form an ideal solution and the vapour phase of A and B also ave ideally.
		i)	Explain the matters mentioned above based on intermolecular forces.
		ii)	Benzene (B) and Toluene (T) are two miscible liquids in any proportion and form ideal solutions $P_B^0 = 3 \times 10^3 \text{ Nm}^{-2}$ and $P_T^0 = 2 \times 10^3 \text{ Nm}^{-2}$ at 30°C.
			Molar ratio between Benzene (B) and Toluene (T) in the liquid phase is 3:1 when it is in the dynamic equilibrium with it's vapour phase.
			 Calculate the partial pressures of Benzene and Toluene (P_B and P_T) in the vapour phase.
L. 2	OF A ROOM	one was	
			<u> </u>

	Write the law you used in above.	and the second and an area of the second	and the second second control of the	andriana productiva and productiva and an experience of the company of the compan
			روز در از در ا در از در	ea manadelliment sire nathaman spil smoothy th
	4-2/2	ومر ورود استوره و دراو و دراو و دراو و در	والمراقب وال	والمراقبة
	***************************************			mar Alaba Salah
	***************************************	****		· 在我我们的知识我们们们也是我们的我们是不是我们的人们们是我们们们
Ca	alculate the mole fraction of Benzene	(Y _B) in the	vapour phase	a .
***	***************************************	*****************		
••••	***************************************			
				and the state of t
***			*************	and the state of t
W	rite the low you used in the calculation	n in (iii).		

		********	************	

gra P _B	now the variation of P_B , P_T and tal pressure (P_{BT}) with the emposition in the following aph. Label the pressures P_B , P_T , P_T relevant to the composition $P_B = 0.75$ as $P_T = 0.75$ and $P_T = 0.75$ as $P_T = 0.75$ as $P_T = 0.75$ as $P_T = 0.75$ and $P_T = 0.75$	P		Participant of the second of t
				-
dia	mperature – composition phase gram for the mixture of B and T given bellow.	Temperatur	x _B	Temperature
	go a serio e			
		7 2.1		\mathcal{A}
	*			
		0	Xs	1.0
A)	Label the phase diagram.			
A) B)	Label the phase diagram. Label the boiling points of B and T	as T _B and		vely.

10

4)	a)	i)	Molecular formula of an organic compound is C ₃ H ₆ O. Write suitable structural formula for each of following observation.
		ii)	Write the geometrical isomer which gives H ₂ gas, reacting with Na.
		iii)	Write structure / structures for the product form when it reacts with Na that does not show geometrical isomerism.
		iv)	What is the structure which does not react with Na but reacts with Br ₂ (aq) decolorizing it.
		v)	Write the structure which answer the Brady's reagent but does not answer the silver mirror.
		vi)	Write the structure that answer for the Braydy's reagent but does not answer the pheling's reagent.
ь)	Write	the organic products formed by each of the following reactions. CHO
		i)	$ \begin{array}{c} O & \text{dil.} \\ + \text{CH}_3 - C - H & \underline{\text{NaOH}} \end{array} $
uch v	NAM	Paris .	
in all stap	1,31160	al video	

- d) Do the following conversions.
 - i) $C_2H_2 \longrightarrow CH_3 CH = CHCHO$

ii)
$$\bigcirc$$
 \longrightarrow \xrightarrow{Br} $\xrightarrow{O-C-CH_3}$ \xrightarrow{Br}

ii)
$$CH_3MgBr + (CH_3)_3 CBr$$

$$CI$$

$$CH_2 - CI$$
iii) $CH_3 - CH = CH - \frac{O}{C} - H$

$$CH_3 - \frac{O}{C} - CH_2 - CH_3$$

Write the mechanism for the reaction given above.

d) i)
$$CH_3 - C - CH_3 - CH_3$$

Part B - Essay

05) a) Consider the gases A, B, C and D are in the following equilibrium.

$$2A(g) + B(g) \longrightarrow 3C(g) + D(s)$$

Above dynamic equilibrium is in a constant volume container at constant temperature. After a time t small amount of more B was introduced to the same system, at constant temperature.

Represent the variation of

- i) rate of forward reaction
- ii) rate of backward reaction in a same graph.
- iii) What is the effect on point of the equilibrium? Explain.
- b) The gas P attains the following equilibrium in the temperature range 100°C 200°C.

$$2P(g) \rightleftharpoons Q(g) + R(g)$$
 (1)

Four moles of P were placed in a rigid vessel and allowed the equilibrium to attain at 127 °C. Degree of dissociation of P was 20%.

- Calculate the value of Kp for the above equilibrium at 127 °C.
- When temperature was increased up to 227 °C the following equilibrium also attained other than the above equilibrium partially dissociating the gas Q too.

$$Q(g) \iff D(g) + E(g) - - (2)$$

The degree of dissociation of P(g) was 80%. Total pressure and partial pressure were $2.6 \times 10^5 \text{ Nm}^{-2}$ and $6 \times 10^4 \text{ Nm}^{-2}$ respectively. Calculate the partial pressure and the degree of dissociation of Q.

- iii) Calculate the values of Kp for the equilibrium (1) and equilibrium (2) at 227 °C.
- iv) State whether the above equilibrium (1) is exothermic or endothermic. Explain your answer.

c)
$$4 \text{ NH}_{3(g)} + 50_{2(g)} \longrightarrow 4 \text{NO}_{(g)} + 6 \text{H}_2 \text{O(l)}$$

Standard enthalpy change for the above reaction at 25 °C is -985 kJ mol⁻¹. Calculate standard enthalpy change for the reaction given bellow

$$N_2(g) + 2O_2(g) + 2H_2(g) \longrightarrow 2NO(g) + 2H_2O(l)$$

Standard enthulpy of formation of H₂O(I) at 25 °C is -286 kl mol⁻¹.

- d) i) Define the standard enthalpy of neutralization.
 - ii) You are provided the following solutions and normal laboratory facilities. Propose an experimental procedure to determine the standard enthalipy of neutralization at room temperature. (Calculations are not required.)

 1 moldm³ Ba(OH)₂ (aq), 1 moldm³ H₂(O₄ (aq), 1 moldm³ BaCl₂ (aq)

(6) a) The partition coefficient of iodine between chloroform and water may be determined by the following procedure.
100cm³ potions of chloroform and water were placed, together with certain amount of finally powdered iodine, in a reagent bottle. The contents were shaken for 10 - 15 minutes. If cm³ of powdered iodine, in a reagent bottle. The contents were shaken for 10 - 15 minutes. If cm³ of the chloroform layer was titrated with 0.1 mol dm³ Na₂S₂O₃. 10cm³ of aqueous layer was titrated with 0.1 mol dm³ Na₂S₂O₃. The whole experiment was repeated using two different amounts of iodine. The following result were obtained from the experiment.

	Titration volume tan'		
Eperiment No. —	CHCl ₃ layer	Aqueous layer	
er ett min somet s	12.5	7.	
and the same of th	2.5	3.4	
b		8.2	

- Write down the halanced equation for the reaction between jodine and Na₃S₂O₃
- ii) Calculate the partition coefficient of iodine between CHCl₃ and water.
- iii) Calculate the values of x and y in the table.
- b) i) Derive an expression for the solubility product of BaF₂ at constant temperature.
 i) Solubility product of BaF₂ at 300 k is 1.08 x 10⁻¹ mol³ dm⁻⁹ 500 cm³ of 0.03 mol dm⁻³
 - i) Solubility product of BaF2 at 300 k is 1.06 x 10 mor cm 300 cm of 0.055 min and KF solution is added to a 500 cm³ of saturated solution of BaF2 how much: BaF2 precipitated?
- c) $0.02 \text{ mol dm}^{-3} \text{ Pb(NO₃)₂ is added to 500 cm³ of a solution which is containing <math>0.14 \text{ moldm}^{-3}$ KI and $0.02 \text{ moldm}^{-3} \text{ K₂CO₃} 500 \text{ ml.}$ Kap (PM) = 1.5 x 10⁻⁸ mol³ dm⁻⁹ Kap(PMO₃) = 1.5 x 10⁻¹² mol³ m⁻⁶

Calculate the following of equilibrium.

- i) Amount of Pbh precipitate formed.
- ii) The concentration of
 - i) I(ac)
- ii) Pb2.
- iii) 105₃₃₄₁

- a) A) Explain the following statements.
 - y) (Ö) OH

is more acidic than C2H4OH

- ii) (0)
- can not be converted to

with alcoholic KCN

B) State a chemical test to distinguish each of following pairs or organic compounds.

i)
$$CH_3 CH = CH - C - H$$
 and $CH_3 CH = CH - C - CH_3$

b) i) Write the mechanism for the following reaction.

$$\begin{array}{c|c}
NO_2 & & NO_2 \\
\hline
O & & Br_2 & O \\
\hline
\end{array}$$

ii)
$$CH_3 - C - CH = C - C - NO_2$$

Comment on the isomerism of the above compound giving reasons.

c) A) Do the following conversions.

i)
$$\bigcirc$$
 $\stackrel{O-C_2H_1}{\bigcirc}$ $\stackrel{NO_2}{\bigcirc}$ $\stackrel{NO_2}{\bigcirc}$

ii)
$$C_2H_5OH \longrightarrow C_2H_5 - C_2H_5$$

B) Make a flow chart to separate each component from a mixture of

(You are provided the reagents NaOH, Na and dil. HCl and other laboratory facilities)

8) a) P, Q and R are aqueous solutions of ionic salts having the same anion and three different cations of s – block elements. Several tests were carried out to identify these ions. Tests and relevant observations are given below.

	Post	Observation
i)	Added (NH ₄) ₂ CO ₃ to the solution of salts.	White precipitate.
ii)	Added CH ₃ COOH acid followed by K ₂ CrO ₄ to the above precipitates.	Yellow precipitate.
iii)	Added (NH ₄) ₂ SO ₄ to the filtrate of test (ii) above.	White precipitate,
iv)	Added (NH ₄) ₂ C ₂ O ₄ to the filtrate of test (iii) above.	White precipitate.
v)	Added Cu turnings and cone. H ₂ SO ₄ to the initial solution of salts.	Brown coloured gas.

- i) Explain the above observations.
- ii) Identify the cations in P, Q and R salts.
- iii) What is the anion in the above salts?

b) Using the method mentioned only, identify the solutions in each group given bellow.

- i) $Pb(NO_3)_2$ Na_2SO_4 $MgCl_2$ Mixing the solutions pairwise and heating.
- ii) $Ba(OH)_2$ $Zn(NO_3)_2$ $CuCl_2$ Mixing the solutions pairwise.

e) Write balanced chemical equations for the observations you expect when H₂S gas is passed through an aqueous solutions of Na₃AsO₄ and Na₃AsO₃ in HCl medium separately.

- Identify A, B, C, D, E, F and G above and label them.

 A is a colourless crystalline solid. It is soluble in water. A white precipitate (B) is obtained when (NH₄)₂S was added to an aqueous solution of A. Small amount of NH₄OH solution was added to a warmed solution prepared by dissolving the above precipitate in HCl solution. A white precipitate (C) was obtained. This precipitate was dissolved in excess NH₃ and a colourless solution (D) was produced.

 Furthermore a reddish brown coloured gas was evolved when the compound A was heated with conc. H₂SO₄. This gas produced H₂O, G and H by reacting with conc. NaOH. G and H
 - as well as an aqueous solution of A produced white precipitates with Pb(NO₃)₂ solutions.

 i) Write the electronic configuration of the cation formed by the metallic element in A.
 - ii) Identify the crystalline inorganic compound A.
 - iii) Identify B, C, D, E, G and H.
 - iv) Write balanced chemical equation for the reaction between E and conc. NaOH.
 - v) Give one use of the metallic element in the salt A.
 - b) A 12 dm³ sample of air at 27°C under 16.628 x 10⁵ Nm⁻² pressure containing chlorine gas was bubbled through an excess of KI solution. The solution obtained was diluted up to 250 cm³ and 25.0 cm³ portion of it was titrated with 0.05 mol dm⁻³ Na₂S₂O₃ solution. Volume of Na₂S₂O₃ solution consumed was 20 cm³. What is the chlorine content in the sample of air in ppm.
 - c) You are provided with an aqueous solution of CO_3^{2-} and $C_2O_4^{2-}$. Propose a method to determine the concentrations of CO_3^{2-} and $C_2O_4^{2-}$ separately in the laboratory. (Calculations are not required.)
- 10) a) i) Write an experiment to show the effect of temperature on rate of a reaction.
 - ii) Rate of a reaction is increased by a considerable amount even for the small increase in temperature. Using an energy profile and maxwell Boltzmann distribution explain this.
 - iii) An experiment done by a group of students to determine order of the reaction between Fe³⁺ and Γ with respect to Fe³⁺ and Γ and relevant data are given below.

 A and C solutions were taken into one beaker and B and D solutions were taken into another beaker as shown in the table. Solutions in the two beakers were mixed and the time taken the blue colour to appear was measured.

 Use the rate law as

 $R = K [Fe^{3+}(aq)]^m [I^-(aq)]^n$

	A.	В	C water cm ³	D 0.2 moldm ⁻³ Na ₂ S ₂ O ₃ and starch / cm ³	Taken the blue colour to appear
	0.2 moldm ⁻³ Fe ³⁺ solution / cm ³	0.2 moldm ⁻³ I solution cm ³			
1	15	10	20	5	12
2	10	15	20	5	18
3	15	15	15	5	8
4	10	10	25	5	27

i) Calculate the values of m and n using the suitable data. ii)

Calculate the rate of this reduction in mol dm⁻³ s⁻¹ in the trial no. 4 iii)

Calculate rate constant (K) of this reaction. iv)

Is this reaction an elementary reaction? Explain your answer. V) If the volumes of A, B and D solutions and water were 7.5 cm³, 7.5 cm³, 5 cm³ and 30 cm³ respectively used in the trail no. 5, what would be the time taken the blue colour to appear in the solution?

b) The reaction $2SO_2(g) + O_2(g) \iff 2SO_3(g) \Delta H < 0$ occurs more rapidly in the presence of NO gas. NO acts as a catalyst for the reaction. This reaction take place in two steps and first step is the fast step.

i) Write two steps for the above reaction.

- ii) Draw an energy profile for this reaction in the presence of NO. Reactants, products, intermediates/ energy should be labeled clearly in the diagram.
- 250 cm³ of an aqueous solution was prepared by dissolving 3.0 g of a solid mixture containing KNO₃, KNO₂ and inert impurity. Volume of 0.2 mol dm⁻³ acidified KMnO₄ solution, required to react completely with 25.00 cm³ of the above solution was 20 cm³. The solution in the titration flask at the end point was treated with excess of NaOH and Al powder and heated. The gas evolved was completely absorbed into a 1.0 moldm⁻³ NaOH solution in the presence of phenolphthalein indicator. The burette (K = 39, N = 14, O = 16)reading was 23.00 cm³.

Write the balanced ionic equation for the reaction with KMnO₄. i)

- Write the balanced ionic equation for the reaction occurred when heated with NaOH ii)
- Calculate the number of moles of NO₂ and NO₃ separately. iii)
- Calculate the percentages of KNO3 and KNO2 by mass in the sample. iv)