අවසාන වාර පරීක්ෂණය ජුනි - 2018

Term End Test June - 2018

භෞතික විදහාව I

Physics

පැය දෙකයි Two hours

13- oglesico Grade -13

Instructions :-

*Answer all 50 questions .

question from 1 to 50.

3 – වන වෘරය, 3rd Term Test * Mark the correct or most suitable answer with (×) out of the five choices given for each

g= 10 Nkg -1

Gravitational field intensity on Earth's surface g = Krd where r - radius of Earth d- density of Earth, [assuming that Earth is a perfect sphere]. Units of the constant K is;

(1) kgms²

- (2) kgm⁻¹s⁻¹
- (3) kgm⁻³s⁻²
- (4) kg⁻¹m³s⁻²
- (5) kg⁻¹m²s⁻²

- (2) Which of the following statement/s is/are true?
 - A Due to a moving charge only a magnetic field is created.
 - B A current carrying conductor placed in a magnetic field, always experiences a magnetic force acting on it.
 - C There is always only an attractive force occures between two parallel conductors carrying current towards the same direction.
 - (1) A only

(2) B only

(3) Conly

(4) A and C only

- (5) B and C only
- (3) Shown in the diagram is a micrometer screwguage which consists of 0.5mm pitch and 50 divisions in its' circular scale. When checked for zero error, 48th circular division coincided with the horizontal line of the sleeve. The actual value of the measurement corresponding to the reading shown here is;

- (1) 9.02mm
- (2) 8.48mm
- (3) 8.98mm

- (4) 8.96mm
- (5) 9.00mm
- A particle "A" is projected vertically upwards at 30ms⁻¹ velocity from a point 80m above ground level. After 5s another particle B is released from rest from a point 35m right below the point of projection of A. The time taken for particle A to pass B;
 - (1) 6s
- (3) 4.5s
- (4) 10s
- (5) 8s

The path of an electron entering a magnetic field at a certain inclination with a certain velocity is a: (1) Circle (2) Straight line (3) Parabola (4) Spiral [helical] (5)doesn't move at all (6) · A particle projected up at θ angle with the horizontal from the level ground hit a point which is at d horizontal distance and h vertical height from the point of projection. θ is equal to: (3) $\sqrt{\frac{ga^2}{\cos^2\theta}}$ (4) $\sqrt{\frac{gd^2}{d-h}}$ $(5)\frac{d}{\cos\theta}\sqrt{\frac{g}{2(d\tan\theta+h)}}$ Consider the following statements regarding a ray of light entering a spherical drop of water. A - incident rays are partially reflected at point A. B - incident rays are totally reflected at point A. C - incident rays are totally transmitted through A. of the statements, . (1) Only A is true (2) Only B is true (3) Only A and B are true. (4) Only A and C are true. (5) None of these is true. (8) A bullet of mass 100g flying at 150ms⁻¹ horizontal velocity gets embedded into a wooden cube of mass 2.9kg hanging from a string of length 50cm. The tension of the string (with the wooden block and the bullet init) when the system makes 60° angle with the vertical. (1) 135N (2) 125N (4) 90N (5) 100N A plane with total extension of its' wings 50m flies 360kmh-1 horizontal constant speed Vertical component of Earth's magnetic field is 5 ×10⁻⁶T. EMF induced across the ends of the wingspan; (1) 0.25V (2) 2.5V (4) 40V (5) 50V (10) Water flows steadily through a horizontal tube of flow at 1ms⁻¹ speed through 10cm² cross section at 2kPa pressure. The pressure at Scm2 cross section of tube is; (1) 200Pa (2) 400Pa (3) 500Pa (4) 800Pa (5) 1000Pa (11) The equivalent resistance across A and B is; $(1) \perp \Omega$ $(2) 2 \Omega$ (3) 3 Ω IΩ (4) 4Ω 103 (5) 5 Ω (12) A plate of radius 50cm and mass 5kg is held verically and is in contact with a step of height 25cm at A. What is the minimum value of the horizontal force F applied perpendicular to the axis of plate so that the plate could get into the step? 50N (2) 50√3 N (3) 25N

(5) Non of the above

(4)

100N

(13) A smooth cavity is located along a diameter of a circular horizontal table of radius 0.5m. A ball of mass 90g connected to one end of a spring of spring constant 19Ncm⁻¹ is at rest at 0.1m distance from the centre of the table. The other end of the spring is fixed to the edge of the table. Now the table starts to rotate at 100 rads⁻¹

Constant angular velocity. The displacement of the ball from its' equilibrium position is;

- (1) 9x 15⁻¹ m
- (2) 9× 10⁻² m
- (3) 1×15⁻¹ m

- (4) 9×10⁻³ m
- (5) 1×10⁻² m
- (14) Shown here is a string of length L attached to a positively charged particle oscillating inbetween two parallel horizontal plates under a potential difference. V. The variation of the reciprocal of the square of time period (1/T²) of the simple pendulum with the potential difference (V) applied at the two parallel sheets is depicted here.

Which of the following statement/s is/are true?

- (a) Bottom plate is negatively charged while the upper plate is positively charged.
- (b) Gradient of the graph increases if the separation between plates increases.
- (c) Gravitational acceleration $g = 4\pi^2 LC$
- (1) a only

- (2) a and b only
- (3) a and c only

- (4) b and c only
- (5) All a, b and c
- (15) Two cubes A and B made of the same material are of similar surface nature, with different sizes, of sidelength "2a and a" respectively.

They are heated to the same temperature and allowed to cool under identical enviranmental conditions. The ratio between the initial rates of temperature loss of A and B is;

- (1) 1:2
- (2) 2:1
- (3) 4:1
- (4) 8:1
- (5) 1:6

- (16) Which of the following is true about the setup shown here?
 - (1) Charge on capacitor Y is zero.
 - (2) Charge on capacitor Y is 30µC
 - (3) Charge on capacitor X is 30μC
 - (4) Charge on capacitor X is 20μC
 - (5) None of the above.

(17) A thin glass rod is bent into a hemispherical shape of radius r. +Q charge is uniformly distributed on its' upper half and -Q on bottom half. The electric field intensity at P which is the centre of the hemispherical structure;

- $(2) \frac{2Q}{\pi^2 \epsilon_0 r^2}$
- $(3) \frac{4Q}{\pi^2 \epsilon_0 r^2}$
- 4) $\frac{Q}{4\pi^2 \epsilon_{\Phi} t^2}$
- (5) 0

(18)	Two identical spheri potential;	cal drops of Mercury e	ach charged to a poten	tial V, combines to fo	orm a single drop o
la selle	(I) V	(2) 2 ^{1/3} V	(3) 2 ^{1/2} V	(4) 2 ^{2/3} V	(5) 2V
(19)	corresponding change	in angular velocity is	erature of the system directly proportional to	is raised by an m	ity ω about an axi mount of t ⁶ C. Th
valors:	2000 - 2A 1V-1			$(4) \frac{1}{\omega}$	(5) ± 40°
	column rapped is s pressure, at the hor capillary tube is held	ealed in an environn izontal position show	nent with 99Hgcm in here. When the	10cm 20	///// <u>10cm</u>
	(1) 12	(2) 11	(3) 15	(4) 9	(5) 16
t n	he maximum curre minimum current at s $R_L = 250\Omega$ The rat	ent passed through steady operational sta	it is 100mA. The te is 20mA for	25 V	RL
	(1) $\frac{1}{5}$	(2) $\frac{2}{5}$	(3) $\frac{3}{5}$	(4) ⁴ / ₅	(5) 1
(22) A	An AC voltage source	e V = 240 sin (100πt) o	frives a current throug	h 50 Ω resistor. The	time taken by the
cı	 (1) V (2) 21/3 V (3) 21/2 V (4) 22/3 V (5) 2V (19) A uniform metal rod of length L and mass M is rotated at a constant angular velocity to about an athrough one of its' ends. Now the temperature of the system is raised by an amount of t°C. corresponding change in angular velocity is directly proportional to; (1) √ω (2) ω (3) ω² (4) ½ (4) ½ (5) ½ (6) ½ (7) ¼ (8) ½ (9) 40cm long capillary tube with 20cm length of a Mercyry column rapped is sealed in an environment with 99Hgcm pressure, at the horizontal position shown here. When the capillary tube is held vertical, the length of space above Mercury is; (1) 12 (2) 11 (3) 15 (4) 9 (5) 16 (21) Zeper Voltage of the Zener Diode shown here is 10V and the maximum current passed through it is 100mA. The minimum current at steady operational state is 20mA for R_L = 250Ω. The ratio between minimum and maximum values of Rs is; (1) ½ (2) 2/5 (3) 3/5 (4) 4/5 (5) 1 (6) 1 (7) 2 (8) 2 (9) 4 (10 0 (10 0N) (2) 3.6×10⁴N towards left (2) 3.6×10⁴N towards right (3) 3.6×10⁴N towards right 	is: (Irest -> Irrest			
	(1) 25s	(2) 2.5s	(3) 0.25s	(4) 2.5ms	
bo	stance from an infinit oth on the same plane.	tely long conductor ca The resultant force on	rrying 20A current:	201	20cm
	(1) 0N	(2) 3.6	×10 ⁻⁴ N towards left		2000 000 000 000 000 000 000 000 000 00
	(4) 7.2×10 ⁻⁴ N toward			(c) 3.0×10 N	towards right
(24) The	e potential at point A	of the circuit shown her	e is:		
		(20) (40) (1)	\$1 Ω 1ul		
			Α 2Ω		
	75050000000000000000000000000000000000	1000			
	(4) 3.6V	2μF	3Ω 4Ω		(S) (S)
	(5) 4V ·		1		
<u> </u>	A uniform metal rod of length L and mass M is rotated at a constant angular velocity ω about an axi through one of its ends. Now the temperature of the system is raised by an amount of t°C. The corresponding change in angular velocity is directly proportional to: (1) $\sqrt{\omega}$ (2) ω (3) ω^2 (4) $\frac{1}{\omega}$ (5) $\frac{1}{\omega^2}$ A40cm long capillary tube with 20cm length of a Mercyry column rapped is sealed in an environment with 99Hgcm pressure, at the horizontal position shown here. When the capillary tube is held vertical, the length of space above Mercury is: (1) 12 (2) 11 (3) 15 (4) 9 (5) 16 Zeper Voltage of the Zener Diode shown here is 10V and the maximum current passed through it is 100mA. The minimum current at steady operational state is 20mA for $R_L = 250\Omega$ The ratio between minimum and maximum ralues of Rs is; (1) $\frac{1}{5}$ (2) $\frac{2}{5}$ (3) $\frac{3}{5}$ (4) $\frac{4}{5}$ (5) 1 An AC voltage source $V = 240$ sin (100xt) drives a current through 50 Ω resistor. The time taken by the urrent through the resistor to reach its root mean square value from the peak value is; $(I_{peak} \rightarrow I_{max})$ (1) 25s (2) 2.5s (3) 0.25s (4) 2.5ms (5) 25ms A rectangular loop of Area (20cm x 9cm) is placed at 1cm stance from an infinitely long conductor carrying 20A current; oth on the same plane. The resultant force on the loop when 10 A rerent circulates through it is: (1) $0N$ (2) 3.6×10 ⁴ N towards left (3) 7.2×10 ⁴ N towards right (4) 10 N (2) 3.6×10 ⁴ N towards right (3) 3.6×10 ⁴ N towards right (4) 3.6V (4) 3.6V				
		_ MIAINE I PVEI - P	uysics - 2018 A/L Gray	de 13 Final Term Test -	June 2018

(25) Which of the following correctly depict the variation of I with n where n is the no. of identical cells connected in parallel (cells having an internal resistance) and I is the current flowing through the circuit?

(26) Which of the following shows the correct biasing polarities of JFFT given here?

(27) Current flows through a metal wire of temperature coefficeint of resistance 0.004K⁻¹. When the temperature of the wire is increased from 20°C to 80°C, for the current to remain the same as before, what should be the percentatge increment of the potential difference across the wire?

- (1) 46.6%
- (2) 40%
- (3) 22.2%
- (4) 20%
- (5) 19%

(28) A moving coil galvanometer shows 50 units deflection when a constant electric current flows through it. When a shunt of 12Ω is connected across the galvanometr, its' deflection reduced to 10 units. The internal resistance of the galvanometer is;

- (1) 36Ω
- (2) 48 Q
- (3) 50 Ω
- (4) 54 Ω
- (5) 72 Ω

(29) Two cylindrical containers A and B each contains V volume of an ideal gas at room temperature, covered with two smooth pistons. mA. mass of the gas in A , mass of the gas in B. Now the two systems are allowed to expand isothermally up to 2V volume each. Final pressure of gas samples in A and B are P and 1.5 P respectively. Which of the following is the correct relationship between m_A and m_B?

- (1) $4m_A = 9 m_B$ (2) $2m_A = 3m_B$
- $(3) 3 m_A = 2 m_B$
- $(4)9m_A = 4 m_B$ (5) $2m_A = 9m_B$

355

(30) The speed of sound in Oxygen (O₂) at a certain temperature is 460ms⁻¹. The speed of sound in Helium (He) at the same temperature will be,

- (1) 330 ms⁻¹
- (2) 1420 ms⁻¹
- (3) 500 ms⁻¹
- (4) 650 ms⁻¹
- (5) 400 ms-1

(31)

-3

The input voltage signal fed to the operational Amplifier circuit is as shown here. What are the possible maximum and minimum values for the output voltage?

- (1) 15V ,- 15V (2) 16V , 16V
- (3) +12V, -12V
- (4) 13V, -13V

(32) The Boolean expression for the output F of the Logic circuit here is F = (A.B)(A + B) for output to be $F = (A, B) \cdot (A + B)$ the logic gate X is replaced with;

- (1) AND
- (2) OR
- (3) NOR
- (4) NAND
- (5) NOT

(33) A cube of iron floats on Mercury (Hg) with K1 faction of its' volume submerged at 0°C temperature and K2 fraction submerged at 60°C. Volume expansivity of Hg = γ_{Hg} . Volume expansivity of iron= γ_{Fe} . The ratio $\frac{\kappa_1}{\kappa_2}$ is equal to;

- (1) $\frac{1+60\,r_{Fe}}{1+60\,r_{Hg}}$ (2) $\frac{1-60\,r_{Fe}}{1+60\,r_{Hg}}$ (3) $\frac{1+60\,r_{Fe}}{1-60\,r_{Hg}}$ (4) $\frac{1+60\,r_{Hg}}{1+60\,r_{Fe}}$
- $(5) \frac{1-60 \, r_{Fe}}{1-60 \, r_{Ha}}$

(34) Figure shows a ray of light falls on a transparent sphere with center at C. The ray emerges from the sphere parallel to line AB. The refractive index of the sphere material is,

- √2
- (2) $\sqrt{3}$ (3) $\frac{3}{4}$

(35) A uniform metal rod of length L and mass M is rotated at a constant angular velocity about an axis through one of its' ends. Now the temperature of the system is raised by an amount of toC. The corresponding change in angular velocity is directly proportional to;

- √ω
- $(2) \omega$
- (3) ω^2

(36) Two identical containers with initial volume 8.2dm3 temperature 270C and at pressure "P" are connected using a thin tube. Now the temperature of one of the containers is made 177°C while the other remaining at 27°C. Now the pressure of the system would be;

- (1) 1P
- (2) 1.2P
- (3) 1.4P
- (4) 1.6P
- (5) 1.8P

(37) Three rods having equal dimensions with thermal conductivities K1, K2 and K3 are connected as shown here. The ends A and B are maintained at two different temperatures. Heat flows through the paths ACB and AB at the same rate. Which of the following relationships is true?

- (1) $K_3 = 2(K_1 + K_2)$
- (4) $K_3 = \frac{1}{2}(K_1 + K_2)$
- (2) $K_3 = \frac{\kappa_1 \kappa_2}{\kappa_1 + \kappa_2}$ (5) $K_3 = \frac{1}{(\kappa_1 + \kappa_2)}$

1					
Ť	38) Radius of moon in	nterms of its' mass	(M) universal Geovients	und and a	
	(g) at "h" height a	bove moon's surfac	e is:	mai constant (G) and g	travitational acceleration
	(1) $\sqrt{\frac{GM+h^2}{a}}$	(2) $\sqrt{\frac{GM-I}{a}}$	$\frac{1}{2}$ (3) $\frac{GM}{GM} = 0$	h (4) GM +	h (5) GM 12
(39) The balance point	C of the circult sh	oun bass is start of a	, , , √ g	(3) \sqrt{B} = H
3	Inorder to shift it o	loser to R	own here is obtained ch		
			r.		R
					1200
	galvanome	ter	es with the cell E ₈ and th	10	
				A &	
				12.54	
				46	
	(5) None of he	above.		E,	
(4)	Which of the follow	olina assurant de la			
7	Corresponding to a	ring expression/s is	are true about the equa	tion $E = \sigma T^4$	
	a). T is measured a	perrect blackbody r	'adiator?		
			er chart		
 (1) √(GM + N²) (2) √(GM - N²) (39) The balance point C of the circult show Inorder to shift it closer to B; (1) The value of should be reuced (2) A resistor is connected in series galvanometer. (3) Interchange E₀ and E₅ (4) Increase the value of R. (5) None of he above. (40) Which of the following expression/s is/a Corresponding to a perfect blackbody rade a) T is measured either in ⁰C or K. b) The value of σ is independent of the sec) The above equation is valid for object (1) a only (4) b and c only (41) Which of the following relationships is easily be a perfect blackbody and E (42) A 16g sample of radioactive element having radioactive element left undecayed after 14 (1) 1g (2) 0.5g (43) A simple pendulum oscillating at time per Young's modulus "Y". When an additional period of oscillation (T¹) is given by; (1) T (2) mg T 	e surface nature of the b	łackbody,			
	c) The above equal	tion is valid for obje	(2) $\sqrt{\frac{GM-h^2}{g}}$ (3) $\sqrt{\frac{GM}{g}}-h$ (4) $\sqrt{\frac{GM}{g}}+h$ (5) $\sqrt{\frac{GM}{g}}-h^2$ of the circult shown here is obtained closer to A. For the B; whould be reused connected in series with the cell E_S and the one and E_S are true about kinetic energy of a moving particle (E) and its' De E_S are claimed after 14 days is; (2) E_S and E_S are consistent an		
	(1) a only		(2) a and b only	(2)	e and a set
	(4) b and c only			(3)	a and c only
			38 × 60 / 50 / 50 / 60 / 60 / 60 / 60 / 60 /		
(41)	Which of the follow	ing relationships is	Correct about 1.5	mm	
	Broglie wavelength (2n) 2	s correct about kinetic e	energy of a moving pa	rticle (E) and its' De
	(1) A. or JF	(2) 3 - 5	4 4	V 25	
	113 10 11 12	(a) ADUE	(3) $\lambda_D \alpha \sqrt{g}$	(4) $\lambda_D \alpha \frac{1}{E}$	(5) $\lambda_D \propto E^2$
(42)	A 16g sample of rod	tana et a e			
(12)	radioactive element l	loactive element ha	iving Half Life (T 1/2)	two days, decays for 1	4 days. The mass of
		ort unoccayed after	14 days is;		
	(1) 1g	(2) 0.5g	(3) 0.25g	(4) 0. 125g	(5) 1mg
(43)	A simple pandul	and the second second			0000100000
(43)	Vound's model in man	scillating at time p	period "T" consists of a	string of length "I" er	ross section "A" and
	B	an addition	nal weight mg is attach	ed at the pendulum's l	bottom end, its' new
	period of oscillation (f") is given by;		2011 T. T. C. STORY WAY 18 (1991)	
	(1) T	(2) mg T	(3) T Imalus	com Jan Me	
		(CONTRACTOR OF THE CONTRACTOR	(5) A VING/YK	(4) $1\sqrt{1+\frac{3}{YA}}$	(5) T√YA/mg
(44)	The work done to				
1.1)	= 2 × 10° N	taking a square si	haped film of soap (1	0cm ×10cm); surface	ce tension of soan
					LULES STATE
	(1) 0 × 10 J	(2) 3 × 10 ⁻⁴ J	$(3) 6 \times 10^{-3}$	10. 2 10.11	2

(45) A piston of radius "r" and length "I" is sent at speed "u" through a thin layer of oil of viscosity η and thickness "d" which covers the inner surface of a cylinder. The resistive force on the piston is;

(2) 3×10^{-4} J

(1) (2) 2nrlnud

(3) $6 \times 10^{-3} J$

(4) $\pi r^2 l\eta ud$

(4) 3×10^{-3} J

(5) 2πr/ηu

(5) $3 \times 10^{-2} J$

(46) A ray of light incident normally on the horizontal face of the glass slab and just fails to emerge from the diagonal face of the prism. The refractive index of the prism could be,

(1) $\sqrt{2}$

(3) Slightly greater than 2

- (4) Slightly less than 2
- (47) An observer can see through a pin-hole the top end of a thin rod of height h, placed in a beaker as shown in the diagram. The height of the beaker is 3h and its' radius is h. When the beaker is filled with a liquid up to a height 2h, he can see the lower end of the rod. The refactive index of the liquid is,

- $(1)^{\frac{5}{2}}$
- (2) $\sqrt{\frac{s}{2}}$
- (3) $\sqrt{\frac{3}{2}}$
- (48) A radar emits a signal 9×109Hz towards an approaching aeroplane and detects the change in frequency on receiving the reflected wave as 3 ×103Hz Speed of Radio Waves in air = 3× 108ms1 Speed of the aeroplane is ms-1;
 - (1) 150 2] 100 3] 50 4] 25 5] 2
- (49) A uniform rope of length 12m and mass 6kg hangs vertically from a rigid support, A block of mass 2kg is attached to the free end of the rope. A transverse pulse of wave length 0.06m is produced at the lower end of the rope. The wave length of the pulse when it reaches the top of the rope is,
 - (1) 0.03m
- (2) 0.06m
- (3) 0.12m
- (4) 0.18m
- (5) 2.2m

(50) A, B, C are three identical rigid cylinders in equilibrium in-between two smooth inclined planes at θ inclination to horizontal. The minimum possible value of θ would be;

- (1) $\tan^{-1}\left(\frac{1}{2}\right)$ (2) $\tan^{-1}\left(\frac{1}{3}\right)$ (3) $\tan^{-1}\left(\frac{1}{2\sqrt{3}}\right)$ (4) $\tan^{-1}\left(\frac{1}{3\sqrt{3}}\right)$

3 – වන වාරය, 3rd Term Test

Part B - Essay

Answer 4 questions only.

Physics

- State the conditions required for the validity of Bernoulli's principle. 5. (a)
 - Show that the Bernoulli's equation is dimensionally correct. (b)
 - The tube shown in the figure can be used to measure (c) speed of a fluid flow. It's diameters at P and Q are 0.8m and 0.4m respectively. Two pressure gauges are connected to the apparatus at P and Q to measure pressure inside it. A liquid of relative density 0.6 flows vertically downwards through the apparatus. P is at a vertical height 0.75m above Q. If both pressure gauges at P and Q read same value, calculate the volume of liquid flowing per second.

(d) A system of tubes with same cross-sections as the above tubes is place as shown below and made air to flow through.

The density of the liquid in the U tube is 1600kgm3 and density of air is 1.2kgm3. The velocity of air at P is 20ms. Find the height difference of the liquid columns in the U tube.

A water sprayer used in a garden has a horizontal cylindrical tube as shown below.

It consists of a piston of cross-sectional area 4cm² at the end A and small hole of cross sectional area 4mm² at end B. Calculate speed of ejection of water through this small hole when a force of 56N applied on the piston.

The speed of the piston is negligible and no frictional forces act on the piston. Density of water is $1 \times 10^3 \text{kgm}^{-1}$.

- 6. (a) To find the velocity of sound in air, a student uses a tube vertically clamped by a stand and changes the water level inside it. Initially the tube is completely filled with water. Then the water level in the tube is gradually lowered. A small loud speaker connected to a variable signal generator is placed above the open end of the tube The air column inside the tube resonates for the first time for the length of air column 130mm when the frequency of the sound of the speaker is 600Hz. The second resonance is obtained at the length of air column 414mm for the same frequency.
 - Draw the patterns of the variations of pressure inside the tube for the above two situations.
 - Calculate the end correction of the tube.
 - 3) Find the velocity of sound in air.
 - 4) Find the approximate diameter of the tube.
 - (b) Next the frequency of the lauds speaker is adjusted to a certain value and the air inside the tube at temperature 39°C is made to vibrate. Then the beats of frequency 4Hz is heard. When temperature of air inside the tube is decreased to 10°C, heard beat frequency is 1Hz. Calculate the frequency of the speaker.
 - (c) The student next fixes the tube horizontally and makes the air inside the tube to vibrate with a certain frequency of the speaker. Then one end of the tube is suddenly closed. As a result it is found that the fifth harmonic of the closed tube is 150Hz greater than the fundamental frequency of the open tube. Calculate the fundamental frequency of the open tube. (neglect the end corrections)
- (a) Define Young's modulus (Y) for a thin metal wire. Name two other physical quantities having similar dimensions to that of Young's modulus.
 - (b) Shown here is the variation of contraction (e) of a uniform hollow cylindrical plastic rod under a variable comperessional force (F)

- (i) Write down the Law with which you can interpret this graph. What elastic potential energy (in mJ) is stored in the plastic rod under the external force of 500N?
- (ii) Calculate Young's modulus for plastic (π = 3). External diameter of the plastic rod = 4cm, Diameter of the cavity = 2cm. Length of the rod = 90cm
- (iii) The maximum compressional force applied on the rod is 3600N. What is the corresponding maximum contraction? What is your assumption for this calculation?
- (c) A scaled cubical container of external dimensions 2m ×2m ×2m is resting at the bottom of a deep reservoir with still water. Its' total mass with the content is 1×10⁴ kg. Now it is being lifted gently under a constant force using 4 steel wires each of original length 10m and area of uniform cross section 1cm² connected at the 4 corners of the container, such that the wire remain straight and vertical while the container is horizontally stable. Young's modulus of steel = 2×10¹¹Nm⁻². Density of water 1000kgm⁻³ Proportionality limit for each steel wire 4×10⁸Nm⁻².
 - (i) Up to what maximum mass the four wires together can support? What is the corresponding extension in each wire?
 - (ii) What is the extension of each wire in water. Once the container is just raised above
 - (iii) Now the container is lifted with constant speed by uniformly decreasing the length of wires using a pulley mechanism. Once the box is completely raised out of water, extension of each string is 2.5mm. At this instance, what is the difference in height between the container and pulley?
 - (iv) If the container is completely raised above water surface, by directly pulling up the wires (without reducing their length using pulley mechanism) what would be the corresponding extension of each wire?
- (a) Write down an expression for the force acting on moving charged particle entering to a
 magnetic field at an angle θ to the field. Introduce the symbols used.
 As shown in the following figure current of 50A flows through a thick Cu plate.

t = 0.1cm

d = 0.02m

(i) Find drift velocity of electrons.

Charge of an electron = 1.6×10^{-19} C

Number of electron per volume of $Cu = 2 \times 10^{29} \text{m}^{-1}$

- (ii) Now consider there is a uniform magnetic field of flux density 2T acting perpendicular to the direction of the current in the Cu plate and directed out of the paper. What is the magnitude of magnetic force acting on electrons.
- (iii) What is the magnitude and direction of the electric field required to balance the above magnetic force.

- (iv) Find the required potential difference that should be on either side of conductor to obtain this electric field. State it's polarity.
- (v) Without applying this potential difference externally, it can be obtained by the deviated of electrons. For this purpose what should be the magnitude and direction of electric field in the conductor.
- (b) In the following figure, it is shown a small wire coil placed near a large bar magnet. The axis of the coil is parallel to the axis of the magnet.

The cross-sectional area of the coil is 0.4cm^2 and has 150 turns. The variation of magnetic flux density (B) of the bar magnet with the distance x from it is shown below.

- (i) What is magnetic flux density at a distance 5cm when the coil is at that position.
- (ii) What is the total magnetic flux through the coil.
- (iii) The coil is moved from the point at distance 5cm to the point at distance 15cm in time 0.2s, Calculate the induced electric motive force in it.

9. Answer either part A or part B only

(A) (i) A cell of emf E and internal resistance r is connected across a resistor R as shown in the diagram. The current in the circuit is I. Write the expression for the power of the resistor R interms of E, I and r.

(ii) To send a constant current through the resistor 4Ω a diode of barrier potential 0.6V is connected across it a as shown in the diagram.
If the current through the forward biased diode is 0.05A, find the current through the 4Ω resistor and the

total current I.

(iii) A circuit with a thermistor shown in the diagram is used to measure the temperature of a car engine. R is the resistance of the thermistor.

- a) Obtain an expression for the current I through Ro in terms of R.
- b) When the engine temperature 30°C, the current through R₀ is zero. Find the value of R at 30°C.
- c) The current through R₀ is 0.15A when the engine temperature is 100°C. Find the value of R at 100°C.
- d) Sketch the variation of the resistance of the thermistor with the its temperature.
- e) Find the temperature resistance co-efficient of the thermistor.
- (iv) To limit the current to 0.15A through R₀, the diode is used as in part (ii). Then find the value of R.
- (B) a) (i) Name the three configurations of the transistor and draw the relevant circuit diagrams for npn transistor. Clearly show the input and output.
 - The configuration having a voltage and current gain is used as an amplifier.
 - a) Write three requirements in basing the transistor.
 - b) Draw the circuit diagram for the amplifier which is biased using a single 9V power supply and two resistors R_B and R_C , show clearly the input and output terminals.
 - c) Calculate the value of R_B to produce 40 mA base current. The transistor is a si-type and potential barrier is o.7 V.
 - d) Taking the dc current gain a 100.Find R_C.
 - (iv) What are the two biasing regions of the transistor when it is used as a switch.

Light dependent resistor (LDR) is used in a Wheatstone bridge as shown in the diagram. When light is incident with certain intensity on the LDR, the bridge is balanced. Find the resistance of the LDR under the light.

The X and Y terminals of the Wheatstone bridge is applied to the two inputs of the (ii) operational amplifiers as shown in the diagram.

For certain light intensity incident on the LDR, the potential at X is 1.38V . Then the LED connected to the output emits light. Find,

- The resistance of the LDR under this light intensity. a)
- b) The voltage gain of the amplifier.
- c) Output voltage.
- The diagram below shows a part of a device used to inform people about the flood in a region where there is a flood threat due to over flow of a river.

L1, L2 and L3 are laser beam directed to LDR's, D1,D2 and D3 respectively. Initially laser beams are covered by an opaque moveable knob connected to the piston. When the water level is 5m the knob is little lifted and the light from L1 falls on D1. When the water level is 6m, the knob is further lifted and light from L1 and L2 fall on D1 and D2 respectively. When light falls on a LDR it produces a logic 'l' and when no light is incident on a LDR it produces a logic 'O'.

When Dt receives light, a yellow colour LED is lighted to indicate the potential flood threat. When D₁ and D₂ both receive light orange colour LED is lighted to indicate minor flood thread. When D₁ , D2 and D3 all receive light from L1, L2 and L3 respectively, red LDD is lighted to indicate the major flood threat.

- Taking the input signals of D1, D2 and D1 as A, B and C prepare the relevant truth (i) table. F1, F2 and F3 indicate the initial flood threat, minor flood and major flood respectively.
- Write the corresponding Boolean expression for F1, F2 and F3 respectively. (ii)
- Draw the corresponding circuit diagram using basic logic gates. (iii)

10. Answer either part A or part B only

- (A) (i) Write down an expression for the external work done by gas if it's volume is increased from V₁ to V₂ under a constant pressure P. State whether this work is done by gas or on the gas.
 - (ii) Mass of 1kg of water at temperature 100°C is converted in to vapour under constant atmospheric pressure 1.01×10⁵Pa. Therefore it's volume increases 1.00×10⁻³ m³ to 1.671m³. The specific latent heat of vapourisation of water is 2260kJkg (Give all answers to its nearest integer value)
 - (1) What is the amount of external work to be done in the process?
 - (2) Calculate amount of heat to be supplied to the system externally.
 - (3) What is the change of internal energy of system? In what form does this energy exist in gas.
 - (4) What percentage of energy is used to do external work, during the process?
 - (5) Can you name the above process as an isothermal process? Explain.
 - (iii) (1) A certain mass of eather in a container at 13⁰C is transferred to a large container. As a result it's pressure drops and eather starts boiling. In consequence to this the eather cools. What percentage of eather will evaporate when cooling to 0⁰C. The specific heat capacity of liquid eather = 2.4×10³Jkg⁻¹K⁻¹ The specific latent heat of vapouration of eather = 3.9×10⁵Jkg⁻¹. Assume there is no heat exchange between the system and the surroundings.
 - (2) 500g of water at initial temperature 20°C is placed in the freezer of a refrigerator. In 2 hours the it's temperature falls to -10°C. Calculate the rate at which the heat is released by water. Specific heat capacity of water = 4200Jkg⁻¹k⁻¹ Specific heat capacity ice = 2100Jkg⁻¹k⁻¹
 - Specific talent heat of fusion of ice = 336000 Jkg⁻¹k⁻¹

 (3) What happens to the heat release by water in the freezer.
 - (4) The door of a refrigerator is kept open inside a room. But the temperature of the room does not fall. Instead the temperature in the room rises. Explain this.
- (B) The liberation of electrons from any surface of a substance is called electron emission. Any piece of metal block consists of plenty of free electrons. Although the free electrons move randomly inside, they can not leave the surface of the metal to initiate electron emission.

On reaching the extreme surface of the metallic block, the free electrons do not get any positive nucleus ahead of them, but they will have attractive force by the nuclei behind them inside the metallic block. So, to leave the metallic surface an electron must cross a potential barrier offers by the positive nuclei. This potential barrier which prevents a free electron to liberate from the metallic surface is called surface barrier. When a sufficient external energy is given to the free electrons, it can cross the surface barrier and liberate from the metallic surface.

A free electron possesses some kinetic energy. But this kinetic energy is not sufficient to overcome the surface barrier. The extra energy required to just overcome the surface barrier of any metal by an electron is called work function.

There are mainly four types of electron emission commonly used, thermionic, field, photo electric and secondary.

When a metal is heated sufficiently, the free electrons at the extreme surface of the metal get sufficient energy to overcome the surface barrier and emit from the metal. This is referred to as thermionic emission.

When high positive field is applied in front of the metal surface. The influence of this high electric field pulls the free electrons and help them to cross the surface barrier of the metal. This is referred as field emission

When a beam of high-velocity electrons strikes on the metal surface, the kinetic energy of the electrons is transferred to the free electrons on the metal surface. Thus the free electrons may get sufficient kinetic energy to overcome the surface barrier and start electron emission.

- (a) What is meant by the surface barrier and the work function according to the passage?
- (b)Surface barrier of a certain metal is 5eV. Kinetic energy of free electron is 1eV. Find the work function of the metal
- (c) What are the four types of electron emission? Explain each method briefly
- (d)Thermionic electron beam produced from a tungsten filament is accelerated by 200 kV potential difference and bombarded with a tungsten metal to produce X-rays
 - (i) Copper filament is not practically suitable to produce thermionic electron instead of tungsten filament. Explain this in terms of their melting points

- (ii) Write one application of the thermionic emission except in X ray production
- (iii) Find the kinetic energy gained by an electron in electron volts(eV)
- (iv) Some electrons collide with K- cell electrons of tungsten atoms and they are knocked out creating empty spaces. L-shell electrons move into these empty spaces. This movement from high energy to low energy shells releases x-ray photons of wave length 4x10⁻¹¹m which is characteristic of the tungsten and it is called K_e. Most elections are slowed down due to the repulsion from nucleus and their path is deflected. Due to this 8 keV is lost and it appears in emitted as x rays
 - (1) Find the binding energy difference between cells K and L
 - (2) Does the Ka depend on the accelerating potential? Explain
 - (3) Find the wave length of x rays emitted by deviated electrons
- (e) X-rays of wave length 2x10⁻¹⁰m hit with the cathode metal of photo shell. The work function of the cathode metal is 5 keV.
 - (i) Find the maximum kinetic energy of the photoelectrons
 - (ii) Find the stopping potential

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය,2018 – ජුනි General Certificate of Education (Adv. Level) Examination, June 2018

භෞතික විදහාව II

Physics II

01 E II

පැය තුනයි Three hours

13-- ලෝණිය Grade -13

අවසාන චාර පරීක්ෂණය, Final Term Test

Name

 $g = 10 \text{ Nkg}^{-1}$

PART A -Structured Essay)pages 2 -6 (

- * Answer all four questions on this paper itself
- * Write your answer in the space provided for each question. Note that the space provided is sufficient for your answer and extensive answers are not expected.

PART B- Essay (Page 07-11)

- *Answer four questions only. Use paper supplied for this purpose.
- *At the end of the time allocated For this paper, tie the two together so that part A is on the top of part B before handing over the supervisor.

For Examiner's Use Only

Part	Q.No	Marks
	1	
A	2	
	3	
	4	
	5	
В	6	
	7	
С	8	
	9A	
	9B	
	10A	
	10B	
lotal		
Percentage		

Final Marks

In Number	
In words	

$g = 10 \text{Nkg}^{-1}$

- You are required to find the density of coconut oil from a graphical method. You are given
 a 100 mL graduated cylinder of mass 50 g, coconut oil and a triple-beam balance only for
 this experiment.
 - (a) What is the least count of the triple beam balance?
 - (b) The cylinder is filled to the 100 mL level with oil and its mass is measured to be 132.6 g. Estimate the density of the oil
 - (c) Write the experimental procedure to find the density from the graphical method

(d) The graph plotted base on experimental data is given below. All quantities are marked in SI units

- (i) Label the axis with SI units
- (ii) Calculate the gradient. Show the two points clearly, which is used to find the gradient

(iv) Which value of the oil density calculated in part (b) and part (d) (iii) is more accurate? Explain (e) As an indicator of the accuracy and precision of this method, the experiment is repeated for water having precisely known density. (i) Sketch the shape of the relevant graph in previous two axis (ii) How do you check the accuracy of the density of oil? (f) How do you use this set up to find the density of an irregular shape metal piece? It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
repeated for water having precisely known density. (i) Sketch the shape of the relevant graph in previous two axis (ii) How do you check the accuracy of the density of oil? (f) How do you use this set up to find the density of an irregular shape metal piece? It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
repeated for water having precisely known density. (i) Sketch the shape of the relevant graph in previous two axis (ii) How do you check the accuracy of the density of oil? (f) How do you use this set up to find the density of an irregular shape metal piece? It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
(i) Sketch the shape of the relevant graph in previous two axis (ii) How do you check the accuracy of the density of oil? (f) How do you use this set up to find the density of an irregular shape metal piece? It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
(f) How do you use this set up to find the density of an irregular shape metal piece? It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
It is shown in the following figure, an experiential setup used to determine the specific latent heat of vaporization of water by the method of mixture.	
latent heat of vaporization of water by the method of mixture.	
latent heat of vaporization of water by the method of mixture.	
X	
X Y	
(i) What is the use of the tube X?	
(ii) What is the use of the steam trap?	

(iv)	Write down the measurements you take in the correct order (introduce the symbols
	used)

(v)	Other than the above measurements, what are the other data required to calculate the
	latent specific heat of vapourisation of water.

(vi)	Write an expression for specific latent heat of vapourisation in terms of
	measurements in part (iv) and data in part (v). Assume the temperature of steam as
	100°C.

(vii)	Other than the measurements and the data in parts (iv) and (v), what is the other
	important factor that you should handle with care? State why you should care it that
	much?
(viii)	What procedure do you follow to correct the error due to heat exchange with the
	surrounding?
*	

4 m m = 7 m m

3. In an experiment to find refractive index of glass, using a glass prism, you are provided with a drawing board with a white sheet of paper fixed, an equilateral glass prism, pins, a pencil and a ruler. It is required to find angles of deviation for different angles of incidence.

(i)	Out of the three lines drawn , select the correct line as the incident ray and show the correct positions of placing pins P_1 and P_2 on it.
(ii)	To see the images of pins P1 and P2 through side AB, out of eye positions x any y
	which position is more correct.
(iii)	State the experimental procedure do you follow to trace the ray of emergence.
(iv)	What are the other apparatus you require to carry out this experiment?
(v)	Complete the path of the ray emerging from the prism on the above figure and mark
	the angle of incidence and angle of deviation.
(vi)	Draw the rough sketch of the
	graph you expect and lable the
	axis.
(wii)	To calculate the refractive index of the prism you obtain the most important quantity,
(411)	the angle of minimum deviation of the prism from the graph. What experimental
	procedure can you take to increase the accuracy of the minimum deviation?

(vii	i) If the angle of minimum deviation you found from the graph is 370, what is the
	refractive index of the prism?

(ix)	What difficulty do you find if you to to 5-1-th.
	What difficulty do you find if you try to find the angle of deviation for the incident angle 15°.

	131.00.00.00.00.00.00.00.00.00.00.00.00.00
. Foll	owing figure shows a setup circuit to find the value of an unknown resistor (Q) by a
(i)	You are provided with an extra key S, —()— and a resistor of $1k\Omega$. Show how you connect them to the galvanometer for it's safety?
1	If the resistance of resistance box P is zero, will you be able to find a balance point? Explain this interms of potential.

-	
fility 16	the recistories of the state of
E	the resistance of the resistor box P is infinity, will you be able find a balance point? explain this interms of potential.
0.5	***************************************
(94)	***************************************
2577	
***	······································
(iv) W	hile trying to find a balance point, no balance point is found. Write down two
po	ssible reasons for this .
1)	***************************************
2)	***************************************
	The state of the s

n -05- Advance Level - Physics - 2018 A/L - Grade 13 Final Term Test - June 2018

Do not write anything

(v)	Derive the theoretical relation to plot a straight line graph to determine the value of Q.

4.7	A = 1
(vi)	State how you calculate Q using the above graph.

(vii) I	Explain, how you check the uniformity of the meter bridge wire.
e - 144	177777771177777777777777777777777777777
(VIII) The wire may be heated up due to the a current flow in it. Explain the dependence of
	balance point on the heating effect.
(ix)	How can you minimum the heating of the wire?
inc	Particular de transfer de la compactación de la com

	9

Do not write anything

DOB ..

G.C.E.(A/L)
PHYSICS

Marking Scheme

2018 - June - Grade - 13

<u>Grade 13 – June – 2018 – M.C.Q.</u> <u>Visakha Vidyalaya – Colombo - 05</u>

Q.No.	Answer
1.	4
2.	3
2.	5
4.	5
5.	4
6.	2
7.	1
8.	1
9.	2
10.	. 3
11.	1
12.	2 2
13.	2
14.	3
15.	1
16.	1
17.	1
18.	4
19.	5 EM (2)
20.	2
21.	3
22.	4
23.	4
24.	3 5
25.	5

	Answei
26.	4
27.	3
28.	2
29.	3
30.	
31.	3
32.	. 3
33.	1
34.	2
35.	1 2 2 2 2
36.	2
37.	2
38.	3
39.	4
40.	4
41.	3
42.	4
43.	4
44.	1
45.	1
46.	
47.	3 2 3 3
48.	3
49.	3
50.	4

· All 2018. Gr. 13 June (H) -3 @ij -3 21 -3 1 - 1 0-4 (F) - H (3- H)3 22 - H 0 - 2 2 - 3 23 - 4 B - 4 (3) - 2 (33) - 1 3 - 5 (2ly - 3 34 - 2 B - 1 (H) -3 A) - 5 (H) - 1 33 - 2 (B) -1 25 <u>-5</u> 5-4 (36) - 2 (Ab) - 3 26 - H (b) - 1 (b) - 2 AB- 2 3 − 2 29 - 3 (7) - I (F) - 1 (H8) - 3 38 - 3 29 - 2 (B) - H 8 - 1 (Hg) - 3 39 - 4 **29** -3 19 -53 9 - 2 (50) - 4 (HO) - H (30) -2 20 -2 (i) -3

Final T.T.

- स्टिहा त्याय मित ७०० १९ व्हायुक्त त्याद हत्याच्या कित्र कार्यहरू (1) (5).
 - (i) हुलाह त्रेक्टिक V प्रवेशक प्राप्त स्थाप्त मान्त्र हुड़ प्रवेशक प्राप्त क्रिक क्रिक प्राप्त हुड़ (!!)
 - अक्ट प्रमु हुन्छ अस्त हुन्स क्रिक्ट प्रमुह हुन्य हुन्

 - (h) 96eg हाक्ष्य आह अहर द्वाह हाया एक्ट्राह हिन्हें (h)
 - $(m^{5}-\omega^{1})z^{4} (\sigma^{5}-\sigma^{1}) + (m^{3}-\omega^{5})z^{3} (100-\sigma^{5}) = \omega^{1}z^{2}(\sigma^{5}-\sigma^{1}) + (\omega^{3}-\omega^{5})z^{4} (100-\sigma^{5}) = \omega^{1}z^{2}(\sigma^{5}-\sigma^{1}) + (\omega^{3}-\omega^{5})z^{4} (100-\sigma^{5}) = \omega^{1}z^{2}(\sigma^{5}-\sigma^{1}) + (\omega^{3}-\omega^{5})z^{2} = \omega^{1}z^{2}(\sigma^{5}-\sigma^{1})z^{2} = \omega^{1}z^{2}(\sigma^$
 - अनुवर्णाकुन कुनुप्रन माठ्य नाज्य अक्राक्टिन इक्स्प्रमुख (अन्यन प्रायणेयान) (nil) अनेवत्याकुन कुनुप्रम्य माठ्य नाज्य नाज्य नाज्य नाया क्राया नाया क्राया नाया क्राया नाया क्राया नाया क्राया

 $\begin{array}{lll}
\overline{MII} & N = \frac{Sin\left(A+Dm\right)}{Sin\left(Ax_{2}\right)} \\
N = \frac{Sin\left(bot\frac{37}{2}\right)}{Sin\left(bot\frac{37}{2}\right)} \\
N = \frac{Sin\left(bot\frac{37}{2}\right)}{Sin\left(bot\frac{3}{2}\right)}
\end{array}$

Owerloy.

Sons regues sheerery.

Apsoloon solf hon duringy.

Dargoon solf hon shringy.

IX eoso dreev repurs AB

[10]

530000 DEX1 LEADER LESONE DE CON DESCRIPTO DEN DE CONTRADOR DE CONTRA DE GOOD DNOT EDM BEGINEN 54 *~* 6. capromon sursion carbony ESUD GRAZIND (10 (10. (10. Sess zerran exquer Grown sown exerces 8505mg eyel Ben Fronts exyn servory som someron

(9)	P හා @ ඔරු කුම නිව දැන් ශාලින මකුනාලය ම ඇව (100-L) දිරින් දැන්නේ දැන් ශාලින	(01)
(h)	නෙවට කුලුල්ලට සිතුදෙවුණ දිහ සැක්මක දිහ වෙනස් දෙඉහුතුණා සැක්මක දිහ සැක්මක දිහ	
18	තු <i>කරු ව</i> රින් වර <i>පහස්දු පම</i>	(01)
(ž)	නිව තමුණක් දුර්වෙන කර වාරාව අවශ පුවුරක පරිභවයට පාරවලන ක්රීඩ කර වාරාව අවශ	رما)
-		
		1005
		4

Won Viscous Incompressible steady streamlined (क) (1) उन्तरमेश एकाइम, देमबुद्दम्, देयावव्य देयाके से बेनार है। (5) b+ Pens+62p = 2 [b] = Wright - SIL - S 1 -9 × 22 (1) [7] [61] = W[]([1])= M[1]= [SAP] = ML= LL=F = WC, L= The equation is dimensionally correct. (3) [SW O D STAB C-3899 1677 76 No + 62 pb = 13+ 86 no + 62 pa . Pp=PQ ha=0 hp=0.75m g(hp-ha)=&(Va-Vp) -0-0) HPVP = HDVS x (0.4)2 /p=x(0.2) x 41/6 = 10 -(01) O=> g (hp-h2)= /2 ((44p)- Vp) 10x0.75x2=15/p=1 Nb= 1 w2, -(01) 949A = 61088 65 1000 361: - x (0.43x1= = x x0.4x0.4x1 = 5.03×101 m3=1 -(01)

e = 0.3d (V) (01) (01) = Homm_ (b) දි ඇති චාගුවක් සැඳහා හැ. R හා M නියන මේ. AT V& FA VXT අවස්ථා දෙකේදිම 2 නියන වන නිභා E & TT 68. elan coanod -eco punares € ord +18mg, 596 +-600 -> 604 (01) + + + = 312 - (01) + + 1 = 1283 - (01)599 - 600 - 601 F+4 = VI-1025 = 1-05 F+4 = 1.05F + 1.05 (OI) (C) 2 = 4-6 15 f+150 = 5 V @ (01) I'm overfour. $\frac{f+150}{f} = \frac{5V}{HL} \cdot \frac{2L}{V}$ F., 3f., 5F. 2++ 300 = 5+ £ = 100HZ ___ (QI)

Grade 13 - June 2018 (Final) Marking scheme - Essay. (7) <u>සාමානුතාතික සිමාව තුළ දී</u> සුනාහමලය (<u>F</u>). නික්ලානවට (e/1) දරණ අනුනාකය — @ දීම් නග ද කික්ක ල ල ල . . a) i) හුත් ගේ නියමය : යමාපුනතික සිමාව තුළ දි තමබියක සිදුමන මිතුතිය යොදුමු ලබන මලයෙම අනුලෝමම සමානුතතික මේ. —— (ව) ii) 500N → 12.5×10-2 mm = 31.25 <u>mJ</u> — @ $A = \pi r_1^2 - \pi r_2^2 = 3 (2 \times 10^{-2})^2 - (1 \times 10^{-2})^2$ $A = 3 \times 10^{-4} (4 - 1) = 9 \times 10^{-4} \text{ m}^2$ $\frac{F}{A} = y \frac{e}{l} \qquad 6eof \qquad y = \frac{F/A}{e/l} = \frac{Fl}{Ae} - 0$ $y = \frac{1000 \, \text{N} \times 0.9 \, \text{m}}{9 \times 10^{-4} \, \text{m}^2 \times 25 \times 10^{-5} \, \text{m}} = \frac{4 \times 10^9 \, \text{Nm}^{-2}}{9} \, \text{m}$ (v) දින්ව භේදික ලක්ෂයය දික්වා සමානුනතිකා සිමාවවළ ජවතින බව උපකල්පයය කෙසේ. F= ye - e= Fl/Ay e = 3600 N × 0.9 m / 9×10-4 m2 × 4×109Nm-2

 $e = \frac{0.9 \text{ mm}}{= 0.9 \text{ mm}} = 9 \times 10^{-4} \text{ m} \longrightarrow 0$ $= \frac{0.9 \text{ mm}}{(25 \times 10^{-2} \text{ mm})} \times 3600 \text{ N} = 0.9 \text{ mm}$ $= 9 \times 10^{-4} \text{ m}$ $= 9 \times 10^{-4} \text{ m}$

b) i)
$$4 \times 10^{8} \text{ Nm}^{-2} \times 10^{-4} \text{m}^{2} \times 4 = 16 \times 10^{4} \text{ N}$$

$$= 16 \times 10^{3} \text{ kg} - \Theta$$

$$\frac{F}{A} = \frac{16 \times 10^{3} \text{ kg}}{2} - \frac{10^{3} \times 10^{4}}{2} = \frac{16 \times 10^{4} \times 10^{4}}{2 \times 10^{11}} = \frac{2 \text{ cm}}{2 \times 10^{11}}$$

$$\frac{F}{A} = \frac{10^{4} \times 10^{4}}{2 \times 10^{11}} = \frac{10^{4} \times 10^{4} \times 10^{4}}{2 \times 10^{11}} = \frac{10^{4} \times 10^{4} \times 10^{4}}{2 \times 10^{4}} = \frac{10^{4} \times 10^{4} \times 10^{4}}{10^{4} \times 10^{4}} = \frac{10^{4} \times 10^{4}}{10^{4}} = \frac{10^{4}}{10^{4}} = \frac{10^{4} \times 10^{4}}{10^{4}} = \frac{10^{4}}{10^{4}} = \frac{10^{4}}{10^{4}} = \frac{10^{4$$

60m 5021 F= BOVSING 70 F, B, Q, V 200 2 - WOOD J- WARED Va = 7.8x10 ms7 - 0. F= BQ Vd Q=90 sin@=1 F= 2×1.6×10 × 7.8×10 II. F=24,96 × 10 × 10 × --- (25×104= E×1.6×109 E = 15.6 XIO NE III 156×2×10-8 31 2 -10-6 5 vas 4 -60 15.6 XIZ = V

E= 15.6 XIU NET (Sun Service) $= 50 \times 10^{3} \times 0.4 \times 10^{4} \times 150$ II. P=BAN Ф= 3×10 чь — \$ = 8 x 10 x 0.4 x 10 x 150 = (3x10 - 4,8x10) E = 8.4 X10 U

E = I + I R $E = I^2 + I^2 R$ $E = I^2 + I^2$ P=I2R P=EI-I2r P=EI-T27 / - @ V=IR SSH (0) 0.6=Ix4 (0) (1=0.15A) (0) (45) (1=0.15+0.05) (0.05A) (1=0.15+0.05) (0.05A) JE= Z2R. (1=0.15+0.05 12 0.2A/ -01 I= (4R+8) / - (01) R-8 = 0= I (at 30°C) : R= 82 - (1) R(22) $\frac{R-8}{4R+8} = \frac{15}{100} = I - 0$ $R = 23 N_{\parallel} - 0$ e) R30 = 8= R0 (1+308)} - (1) Ra = Ro + RANDO R100 = 23 = R0 (1+1008)} - Ro = Ro Ra + R y = m 2 + 5 1 = 1.36 × 10 00 0 = m/c = Roo Ra = Ro CI+ dags.

$$I = \frac{R - 8}{4R + 8} = \frac{2}{10}A - 01$$

$$R_2 + 48 \times 10^{-1} - 01$$

[15]

9(3) [east arts Aear sery a Essy regnan BE serves one sugget you him 5) BC SENTER LEN STOP (20 JUS) STOP STOP -3) VeE = \$ Vec 20 500 (8) B13 V= IR 9-0-7 = 40 x P, R, = 207.5 mg -Ica plo. Tez 10/0/x 40 = 4A Py INZIR 9-4.5 = 4 x R R22 1.125 N/ - @ aft - second symps } - O (b) I $\frac{R}{5.5} = \frac{150}{330}$ R= 25 KA/ - @ (30) Vo = (1+ Rs) (9) R = (1.8-1.28) R: 2 Km, - (01) = 1+ 22.5 - 16/1-00 (94) Vo= 16 Vin + 1.5 - 16 (1.5-1.28)+1.5 = 16 × 0. 22+1.5 = 4.72 V/ - (01)

5) 20, c g Gr m30 + 0, c mr >0, c m30 - > -0, c

= 30.600 ×00 + 336000 + 2100×10) W = 30.605 W - 01)

- क्षण्य क्षण हिम्मिक कुछम् एउट्ट : (01) क्षण्य कुण्यम् कुण्यम्

=) (1) Pt = & + Kman Evends of the rangeoffer E = hig = 6.63 x 10 2 x 1.6 x 10 ev = 6.2 x103 ev = 6.2 bev. , rt = & temn 6.2 = 5 + Kmon kman = 1.2 EeV .-Eman = 2 Vs V5 = 1.2 EV. -