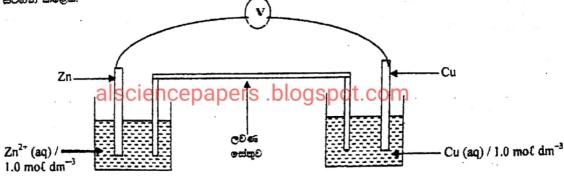

කෝවිතාකා විදාහලය (අ.පො.ස.(උසක් පෙළ) විදනා අංශය] 0003 000 CO ლისშირს შელიც ათალგიშა დიისშირა შეხილა დიკის, 05 დინების, შელიც კოლის, 05 კორის და მადა ითადა. 05 ათი/შთას, შელიც ცოდაცა. 050თინ "ლაცი თალის რარა გიაოლი გითილის დელის შელის შელის მელის და მარის კარის გადალის კრისა გითილის სრის გიაოდი გითილის Vidyataya Colombo - 05. Co'Visakha Vidyataya Colombo - 05. Co'Visakha Vidyataya TAT 14 HOS Visakha Vidval ava Colomir - 05.Co Visakas vidy STATE OF STALLES SALES -----millian Sec. - erapit- 05 eraf Same Scare souga - 05 Sou und afferen augen Breather Ber 2017 - 63 0.0000 0000 00 (200 002) 00000, General Certificate of Education (Adv. Level) Examination, April =2017 රසායන විදනව I පැය දෙකයි தரசாயனவியல I தரண்டு மணித்தியாலயம Chemistry Two hours COCC : 13 - ogea , 13- au gat 6 , Grade -13 * ආවර්තිතා වගුවක් සපයා ඇත. * මෙම පුශ්න පනුය පිටු 09 කින් යුක්ත වේ. ອຸປີສາຫ ປັນວິດາ , ອຸຣ ທະສະ ເພີ່ມມູມ ເສີເມີແມ, Last Term Test * සියලු ම පුශ්න වලට පිළිතුරු සපයන්න. 🗰 ගණක යන්නු භවිත යට ඉඩ දෙනු නො ලැබේ. * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබගේ විභාග අංකය ලියන්න. * උත්තර පතුයේ පිටුපස දි ඇති අනෙක් උපදෙස් ද සැලකිලිමත් ව කියවන්න. # 1 සිට 50 තෙක් වු එක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිසුරුවලින් නිවැරදි හෝ ගොමත් හැලපෙන පිළිතුර තෝරා ගෙන, එය උත්තර පතුගේ පිටු පස දැක්වෙන උපදෙස් පරිදි කතිරයක් (X) ගොදා දක්වන්න. සාර්වනු වායූ නියනය $R = 8.314 \text{ Jmo}\{^{-1} \text{ K}^{-1}\}$ ආවගාඩ්රෝ නියතය $N_A = 6.022 \times 10^{23} \text{ mo} \text{c}^{-1}$ ප්ලැන්ක් ගේ නියනය $h = 6.626 \times 10^{-34} \text{ Js}$ ආලෝකයේ පුළුවගය $c = 3 \times 10^8 \text{ m s}^{-1}$ පරමාණුක තුමාංකය 24 වන X නම් මූලදවාලය පවසින n = 3 සහ l = 2 යන ක්වෙන්ටම අංක ඇති ඉලෙක්ටෝන සංඛායව 1. (1) 8 (2) 7 (3) 6 (4) 5 (5) 1 Cu²⁺ අයනය H₂N−CH₂ −C − 0[−] ද්විබන්ධක ලිගනය සමඟ සම්බන්ධවීමෙන් සෑදෙන අෂ්ඨකලීය සංගත සංකීර්ණයේ 2. ආරෝපණය කුමක් විය හැකිද? (1) - 4(2) - 2 (3) + 2(4) - 1(5) + 13. මෙම සංයෝගයේ IUPAC නම කුමක්ද? CO₂H o $H-C-CH = CH - CH - CH - CONH_2$ alsciencepapers blogspot.com (1) 3 - bromo - 2 - carboxyl - 6 - formyl - 4 - hexenamide (2) 3 - bromo - 2 - carboxy(-6 - oxo - 4 - hexenamide)(3) 3 - bromo - 2 - carbomoyl - 6 - formyl - 4 - hexenoic acid(4) $3 - bromo - 2 - carbamoy \ell - 6 - oxo - 4 - hexenoic acid$ (5) 3 - bromo - 2 - amide - 6 - oxo - 4 - hexenoic acid 4. KCEO3 යන NaNO3 යන ලවණ සහිත මියුණයක් නියත ස්තන්ධයක් ලැබෙන තෙක් රත් කරන ලදි. පිටවූ වායුව එකතු කරගන්නා ලද අතර සම්මන උෂ්ණත්ව පීඩනයේ දී එම වායුවේ පරිමාව 1.12 dm³ ක් විය. ඉතිරිවු සනය NaOH මගින් භාෂ්මික කර එයට A { කුඩු වැඩිපුර එකතු කරන ලදි. එවිට පිටවු වායුව, I mol dm⁻³ HC ද දාවණයක් තුළට යැවූ අතර වායුව සමඟ පුකිකියා කළ HCC පරිමාව 40.00 cm ් ක් විය. ආරම්භක ලවණ මිශුණයේ KCCO; යන NaNO; මවුල අනුපානය වන්නේ මින් කවර එක ද? [ස: උ: සි: දි වායුවක ඔවුලික පරිමාව 22.40 dm³ වේ.] (2) 2:3 (3) 1:3(1) 2:1(4) 3:2(5) 1:2 5. 30 °C දී ජලයේ k_w = 1 x 10⁻¹³ mo(² dm⁻⁶ වන අතර සාන්දණය 0.001 mo(dm⁻³ වන ජලීය NaOH දාවණ 500 cm³ ක 30 ⁰C ද pH අගය වන්නේ, (1) 10 (2) 11 (3) 12 (4) 13 (5) 9 02 - de නො විදනාව (ලකුණු දීමේ පටිපාටිය) – අ.පො. ස. (උ. පෙළ) විභාගය 2017 – ජුනි

-	Casas Desses 4.401.0.1	උසක් පෙළ) විදාහ ඉංගය[රතනා ලෝමණයම්
e solt	1996 and an an an an an an an an an an San Ann				n m magadaac?
6.				ා <mark>මැත්තේ</mark> පහත දැක්වෙන (4) K ₂ XO ₄	(5) XC4
	(1) $K_2 X F_3$	(2) $K_3 X F_6$	(3) $K_2X_2O_5$		
7.	වට, අවර්ණ පැහැදිලි	දාවණයක් ලැබිණි. මේ)ම දාවණයෙන් එක් ම	මෙම දාවණය වැඩිපුර № කාටසක් H₂S සමඟ පි ළ විට පුදු පැහැති අවක්ෂ	යාම සඳවර අර්දෙකර ප්රයාන් ලැබුණි. මෙම
	(1) ZnC(2	(2) MgSO4	(3) ZnSO4	(4) A{2(SO	.(5) SrSO4
8.	ZnS(s) නම ස්ථායී සං එන්තැල්පි අගයන්ගෙන	යෝගයේ දැළිස් එන්තැල් ඒ ඍණ අගයක් ගත හැකි	පිය සෙවීම සඳහා බෝහ දන්තයන් මේවායින් කුම	- හේබර් චකුයක් භාවිත මහා එන ද?	කිරීමේ දි භාවිත කරන
	(1) ZnS(s) හි සමම (2) ZnS(s) හි සමම ගැනීමේ එන්තැ	ත දැළිස් එන්තැල්පිය හා ත දැළිස් එන්තැල්පිය, එ ල්පිය.	එහි සම්මත උත්පාදන ද හි සම්මත උත්පාදන එන්	ාන්තාල්පිය පමණි. තැල්පිය හා සල්පර් හි දෙ	
	ලබා ගැනීමේ ජ (4) ZnS(s) හි සමම	ාන්තැල්පිය. ත දැළිස් එන්තැල්පිය හා	සල්පර් හි පළමු ඉලෙක්ශ	බැල්පිය හා සල්පර් හි පළ පටුරනය ලබා ගැනීමේ සම	මන රන්තැල්පිය පමණි
9.	(J) 213(S) & 800 H	ත උතුළාදන රන්තැල්දිය	ා හා සල්පරි හි ලදවන ඉං	ලෙක්ටෝනය ලබා ගැනීම	ಕ ವಿವಿಶ್ಚುದಿಂದ ರಿ ಶಿಕ್ ಷ.
	$CH_3 - C - C^*H_2$	СН	3−C ⁺ − CH ₃		$CH_2 = CH - C^+H_2$
	-		CH ₃	CH3	-
	(A)		(B)	(C)	(D)
: -	A, B සහ D යන කාම (1) D < A < B < C (4) D < A < C < B		සාව වැඩිවන නිවැරදි අද (2) A < B < D < C (5) A < B < C < D	ාපිළිවෙළ වනුයේ,	(3) A < D < B <
10.	පහත සමතුලිහ පද්ධපි	ය පලකය'න. alscie	encepapers .blogs	spot.com	
		(g) ╤═══े 2B(g) ා නියතය K _p ද මුළු පීඩ≈	තය P ද නම් A(g) හි විස	වන සංගුණක්ය α දැක්වේ	න නිවැරදි පුකාශය
	kp			,	$k_{\rm p} \sqrt{\frac{1}{2}}$
	(1) $\alpha = \frac{\overline{p}}{4 + \frac{k_{I}}{p}}$		(2) $\alpha = \frac{k_p}{4+k_p}$	(3)	$\alpha = \left(\frac{\frac{k_p}{p}}{\frac{1}{4 + \frac{k_p}{p}}}\right)^{\frac{1}{2}}$
	(4) $\alpha = \left(\frac{k_p}{4+k}\right)$	P 7	(5) $\alpha = \frac{k_p}{2P+1}$	•	
11.		් මූල් ුවා සම්බන්ධයෙන	-	ාන්තිය <u>අසතා</u> වේ ද?	
	(2) විශාලතම පරම	ත අයනිකරණ ශක්තිය අ රණුක අරය ඇත්තේ Na රෝව ලෙදෙක්ලෝනයක් ල	වලටය.	ශක්ති පුමාණයක් පිට කර	men Fr
	(4) දෙවැනි ආවර්ත		ායත, තුන්වන ආවර්තය	් මූලදුවා සාදන කැවායා	
12.	කුමන පුකාශනයද? (1) එය ජලය සමඟ	පුතිකිුයා කර X ⁺ (8q) ස	දෙයි.	ම නිවැරදිව විස්තර කරන	නේ පහත සඳහන් ඒව:
	 (2) එය ජලය සමඟ (3) එය හයිවුපත් ස (4) එයට විවලා මා (5) එය හයිවුජන් ස 	පතිකියා කර X ²⁺ (aq) අ මඟ පුතිකියා කර XH ₂ 2 යසිකරණ තත්ව ඇති අන මඟ පුතිකියා කර H ₂ X :	හදයි තම් අයතික සංයෝගය ද රේ චර්ණවක් සංයෝග සං තම් සනසංයුජ සංයෝගය	දයි. පොදයි.	
13.	වායු පරිමාව රැස්කරප දිය කොට එයට (NH	ං ලද අතර පීඩනය 7 x ₄)C₂O₄ වැඩිපුර ප3ිමාවත	10" Ps යටතේ වායුවේ ද ් එකතු කළ,විට අව කෝ ප	වත ස්තන්ධයක් ලැබෙන පරිණව 83.14 dm ක් විය වූ CaC ₂ O4 හි ස්කන්ධය	. ආරම්භක මිශණය න
		ා ස්කන්ධය නොපමණ ද		-	• 00 V
	(1) 84 g	(2) 42 g	(3) 21 g	(4) 16.8 g	(5)-1
		3			

	- em/8	විශාෂා විදුසාලය (ද.පො.ස.(දසන් පෙළ) විදාස මෙය)	රහසා ලේමණයකි			
•	14. චොලුයින් නයිටොකරණය පිළිබඳව අසකාව වන්නේ,					
කළ යක්	 (1) එය බෙන්සීන් නයිවොකරණයට වඩා වේගවත්ය. (2) සා. H₂SO₄ විජල කාරකයක් ලෙස ක්‍රියා කරමින් නයිටොනියම් අයනය නැනීමේ වේගය වැඩි කරයි. (3) සා. HNO₃ යාන්තුණයේදී භෂ්මයක් ලෙස හැසිරේ (4) අතරමැදි පුතේදය සම්පුයුක්ත වනුහ මගින් ස්ථායි වේ. (5) HSO₄, C හි Sp² මුහුම කාක්ෂිකයක ඇති H පුතිශුකණය කරයි. 					
	15. c	පහත සමතුලින පද්ධතිය පලකන්න.				
		$NH_2COONH_4(s) \longrightarrow 2NH_3(g) + CO_2(g)$				
and the first strength	47 ⁰ C දී ඉහත පද්ධතියේ K _p = 3.2 x 10 ⁻⁵ atm ³ වේ. ආරම්භයේදී සංවෘත තාජනයට ඇමෝනියම් කාබනේට් 7.8 g ක් එකතු කර සමතුලිත වීමට ඉහත උෂ්ණත්වයේම තැබූ විට පද්ධතියේ මුළු පීඩනය වන්නේ. [N = 14, C = 12, O = 16, H = 1]					
20	1	(1) 8 x 10^{-6} atm (2) 0.02 atm (3) 0.04 atm (4) 2 x 10^{-6} atm	(5) 0.06 atm			
	16. 1	NH3 සම්බන්ධව පහන කුමන පුකාශය/පුකාශ සනාවේද?				
		(A) වැඩිපුර Cl ₂ වායුව සමඟ පුනිකියා කළවිට N ₂ O හා සහ HCl එල ලෙස ලැබේ.	a (
. •		(B) NH3 වලට අම්ලයක් ලෙස කියා කළ හැක.	- mat			
		(C) රත් කරන ලද මැංගනීස් ඩයොක්සයිඩ් සමඟ පිරියම් කළ විට N_2 ලබාදේ.	and a state of the			
		(D) NH ₃ වලට ඔක්සිකාරකයක් ලෙස තියා කළ නොහැක.				
			3) B හා C පමණි.			
		(4) C තා D පමණි. (5) B, C තා D පමණි.	12			
	17. đ	ජලීය NH₄C£ දුාවණයක සාන්දුණය සෙවීම සඳහා භාවිතා කළ හැක්කේ.	tin in a l			
		(1) $PH = \frac{1}{2}PK_{w} + \frac{1}{2}PK_{w} + \frac{1}{2}\log NH_{4}C\ell$ (2) $PH = \frac{1}{2}PK_{w} + \frac{1}{2}$	$PK_b = -\frac{1}{2} \log [NH_4 C\ell]$			
с		(3) PH = $\frac{1}{2}$ PK _w - $\frac{1}{2}$ PK _b - $\frac{1}{2}$ log [NH ₄ C ℓ] (4) PH = $\frac{1}{2}$ PK _w - $\frac{1}{2}$	$PK_b + \frac{1}{2} \log [NH_4CC]$			
		(5) $PH = PK_w - PK_b - \log [NH_4C\ell]$				
	12 0	පහත දැක්වෙන ක්වොන්ටම් අංක කුලක අතුරින් සාවදා වන්නේ කුමක්ද?				
	10. 0		$n = 3, (= 2, m_f = 3)$			
		(4) $n = 2, \ \ell = 0, \ m_{\ell} = 0$ (5) $n = 2, \ \ell = 1, \ m_{\ell} = 0$				
	19 -	පහත දැක්වෙන සංයෝග සලකන්න.	11 A			
	177 0	NH ₂ NH ₂ CH ₂ NH ₂	ŅH ₂			
	. ($\hat{\mathbf{O}}$			
		CH ₂ OH NO ₂	Соон			
		(A) (B) (C)	(D)			
	. 0	පහන දී ඇති නිරීක්ෂණ සියල්ලම දක්වනු ලබන සංයෝග වනුයේ,				
		 (i) ON⁺ ≡ NCℓ⁻ පමඟ වර්ණවත් ලවණ සාදයි. 				
		(ii) Na ₂ CO ₃ සමඟ CO ₂ පිට නොක්රයි. (iii) NaNO ₂ / HCℓ සමඟ කාමර උෂ්ණත්වයේදී ප්‍රතික්‍රියා කරවා ලැබෙන ඵලයට H ₃ O ⁺ / I උණුසුම් කළ විට කොළ පැහැති දාවණයක් සැදේ.	K₂Cr₂O₂ එකතු කල			
ತಿಶ್		(1) A තා B පමණි (2) A හා C පමණි (3) B හා D පමණි (4) C පමණි	(5) A පමණ			
	20. 5	පහත පුකාශ අතුරින් සනාව පුකාශය වන්නේ.				
		 (1) 1 atm පීඩනයක් යටතේ ඇති සංශුද්ධ දුවයක උෂ්ණත්වය වැඩි කරන විට සාපාංකය වැඩි වේ. (2) H₂O හි ආකර්ෂණ බල හයිඩුජන් බන්ධන බැවින් එහි නාපාංකය දුර්වල ලන්ඩන් ආකර්ෂණ බං 	e atsi Octane [C ₈ H ₁₈]			
		ອີອານອາລສມວິຍີຄາ ຍາຍັງເຄີຍ.				
ටවු මය		(3) 100 ⁰ C ට වඩා ඉහළ උෂ්ණත්වයේ දුව ජලය නොපවති. (4) පරිපූර්ණ දවාංගි දාවණයක ඕනෑම සංයුතියක දී නාපාංකය _, අඩු වාෂ්පයිලි සංරවකයේ භාපාංස	යෙට වඩා <u>අඩ වේ</u> .			
-	• •	 (4) පිරසුවණා දිවර්ග ද්වර්ෂයේක් පිටැම සංසුකාශය ද මොහොසේ දැඩු පරිදේශී පිරිවිත්වේ සාවාසය (5) දෙන ලද දුවයක අවධි උෂ්ණත්වය එහි පීඩනය මත රඳ පවති. 				
4 g						
_						
3	02 - desc	හයන විදනාව (ලකුණු දීමේ පටිපාටිය) - අ.පො. ප. (උ. පෙළ) විභානය 2017 – ජූනි				

මෙත් විතානා විදුකලය (අ.පෙය.ක.(උසත් පෙළ) විදුක මංකය)


26.

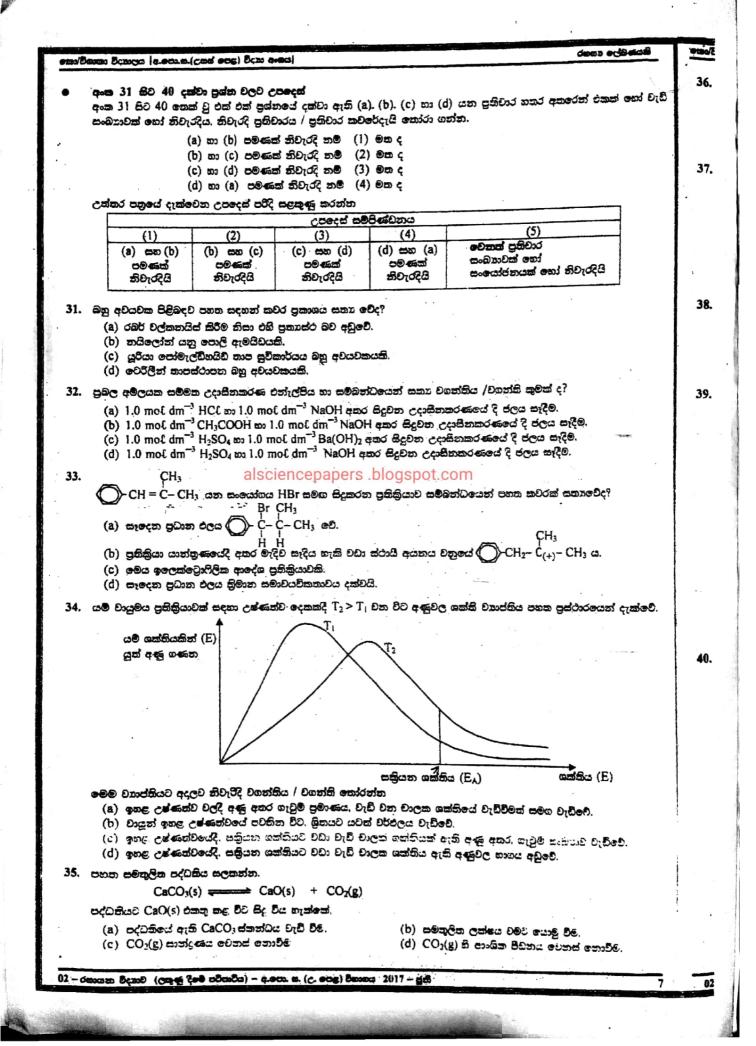
-

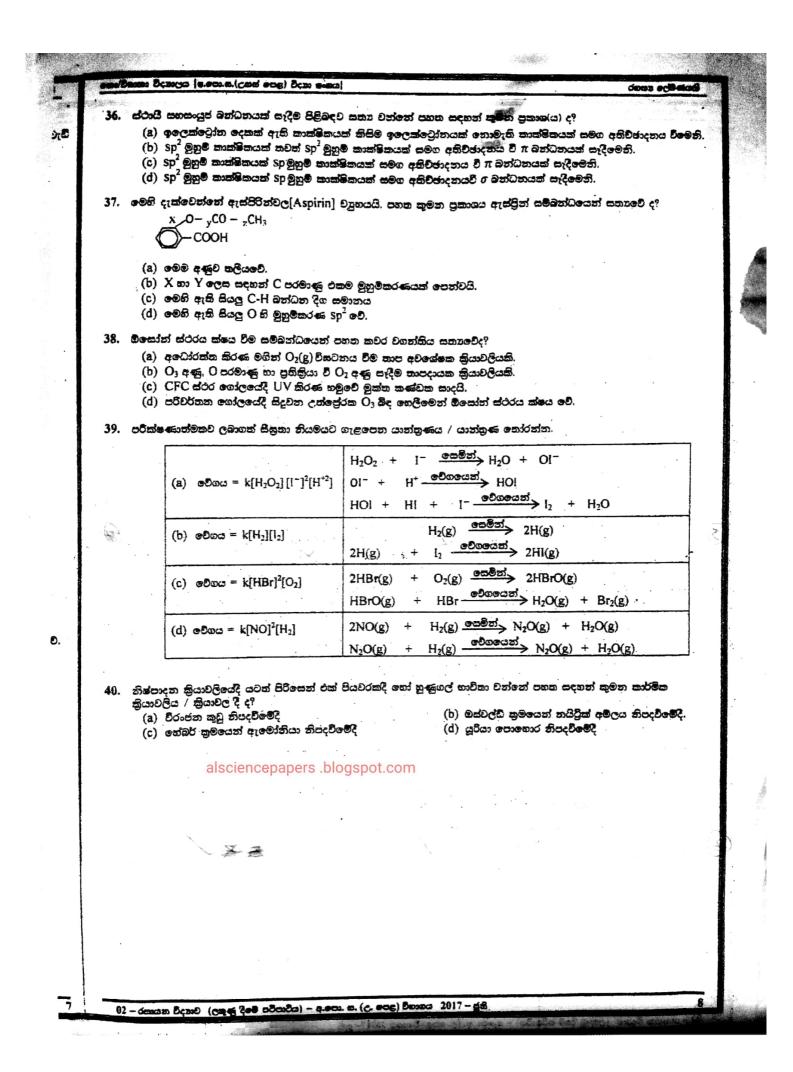
ð

1

පහත රූපසටහනේ දැක්වෙත පරිදි සරල කෝෂයක පකස් කළ ඕහායකු වරින් වර වෝල්ට් මීටරයේ පාඨාංනය නිරීක්ෂණය කර සටහන් කළේය.

පරීක්ෂණ අංකය <u>1</u> 2 3	චෝල්ට් මීටර පාඨාංකය (V)			
1	1.100			
2	1.090			
3	1.081			
4	1.074 🗙			


වෛවැනි පුතිඵලයක් ලැබෙන්නේ කෝෂයට පහත සඳහන් කුමන අබණ්ඩ වෙනසක් සිදු කළ විටදි ද?


- (1) Cu²⁺ සාන්දණය වැඩි කිරීම.
- (2) Zn²⁺ සාන්දුණය අඩු කිරීම.
 (4) Cu²⁻ සමඟ සංකීර්ණ සාදන ප්‍රතිකාරකයක් එකතු කිරීම.

(3) Cu තහඩුවේ පෘෂ්ඨ වර්ගඵලය අඩු කිරීම.
 (4) Cu²⁻ සමඟ
 (5) Zn²⁺ සමඟ සංකීර්ණ සාදන ප්‍රතිකාරකයක් එකතු කිරීම.

පරීක්ෂණය	[X] / mmo{ dm ⁻³	[Y] / mmol dm ⁻³	ආරමනක ශීනුතාව / mol dm ⁻³ S ⁻¹
1	0.3	0.2	4.00 x 10 ⁻³
2	0.6	0.2	1.60 x 10 ⁻²
3	0.3	0.8	6.40 x 10 ⁻²
	පන වේග සමීකරණය කුමක්ද? (2) Rα[X] ² [Y] ²	(3) $R \alpha [X]^2$ (4)]	$R \alpha [Y]^2$ (5) $R \alpha [X][Y]$
(1) කාණ්ඩයේ පහළව	ඒවායේ සංයෝග සම්බන්ධයො යැමේ දි 2 වන කාණ්ඩයේ හයි 03 ව්යෝජනය වී වායු වශයෙන්	ඩොක්සයිඩ් වල දාවාතාවය	
(3) කාණ්ඩයේ පහළට(4) 2 වන කාණ්ඩයේ	යැමේ දී 2 වන කාණ්ඩයේ සල් සියඑම මුලදුවා සිසිල් ජලය සම සියඑම මූලදුවාවල බයි කාබනෙ	ෆේටවල දාවනතාව අඩුවේ. මා පුනිකියා කර H ₂ වායුව ල	බොදේ. න්සයිඩ ලබාගත හැක. —
දාවණයේ F (aq) සාන් K _{sp} (SrCO ₃) = 7.	දණය වන්නේ. 0 x 10 ⁻¹⁰ mol ² dm ⁻⁶	$K_{sp}(SrF_2) = 7.9$	පාන්දුණය 1.2 x 10 ⁻³ mo€ dm ⁻³ ප x 10 ⁻¹⁰ mo€ ³ dm ⁻⁹
(1) 1.3 x 10 ⁻³ mold (4) 5.8 x 10 ⁻⁷ mol		x 10 ⁻² moldm ⁻³ x 10 ⁻⁶ moldm ⁻³	(3) 3.7×10^{-2} mo& dm ⁻¹
පහත සඳහන් සංයෝග අ	සම්ලික පුහලතාව වැඩි වන පිළිග	වළට සකස්කල විට ලැබෙද	ලයේ.
СН,СООН	он сос Ф	-	
(A)	(B) (C)	(D)	CH ₂ CH ₂ (E)
(1) D < B < E < C < (4) A < B < C < D <	· · · · · · · · · · · · · · · · · · ·	E < D < B < C < A B < D < E < A < B	(3) D < E < B < A < C
denam Semt (care 200	000000) - q.e0. u. (c. eag) 8u	2017	

em/Damo Damas (a.em.a.(cast eas) Dam a.emai

scie

ෙ අංක 41 සිට 50 දක්වා පුශ්න වලට උපදෙක්

අංක 41 සිට 50 දක්වා පුන්නවල දී එක් එක් පුන්නය සදහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. මෙම පුකාශ යුගලයට නොඳින් ම ගැලපෙනුයේ පහස වගුවෙහි දැක්වෙන (1). (2), (3), (4) සහ (5) යන පුතිචාර වලින් කවර පුතිචාරය දැයි නෝරා උත්තර පනුයේ උචිත ලෙස ලකුණු කරන්න.

පුනිචාරය	පළමු වැනි පුකාශය	දෙවන පුකාශය			
(1)	8303	සතාවන අතර පළමුවැන්න නිවැදිරව පහදා දෙයි			
(2)	8003	සතාවන අතර පළමුවැන්න නිවැදිරව පහදා නො දෙයි			
(3)	සතාය	අසනාය			
CeD	apers .bl	oaspot.com			
(5)	අසතාවය	අසතාරය			

	පළමුවැනි දුකාශය	දෙවැනි පුකාශය
41.	ශන අවස්ථාවේ ඇලුමිනියම් ක්ලෝරයිඩ් ද්වි අවයවයක් වශයෙන් පවති.	කණ අවස්ථාවේ ඇලුමිනියම් ක්ලෝරයිඩ් අණුවේ නැඩය තලීය නිකෝණාකාර වේ.
42.	ද්විකියික ඇමින NaNO2/ HCI සමඟ පුතිකියාවෙන් ඇමෝනියා වායුව ලබාදෙයි.	ද්විතියික ඇම්නයක භාෂ්මික පුබලතාව පුාථමික ඇම්නයකට වඩා වැඩිය.
43.	C(ගුැපයිට)> C (දියමන්ති) ΔH > 0 මෙම පුතිකියාවේ එන්තැල්පි විපර්යාසය කුඩා ධන අගයක් වන නමුත් කෘතුිම දියමන්ති නිෂ්පාදනය ඉතා අපහසුය.	C(ගුැපයිව) —> C(දියමන්ති) හි සාබ්යන ශක්තිය ඉතා ඉහළය.
44.	මනෑම ස්වයංසිද්ධ පුතිකියාවක ΔH හි අගය මෙන්ම ΔS හි අගය ද ඍණ අගයන් ගත යුතුය.	උෂ්ණත්වය ඉහල නම් ස්වයංසිද්ධ පුතිකියාවක Δ H නි අගය ධන අගයක් ගන්නද ΔS හි අගය ද කෘණ අගයක් ගන යුතුය.
45.	CO(g) + H ₂ O(g) ===== CO ₂ (g) + H ₂ (g) යන සමතුලික පද්ධතියේ CO ₂ (g) නි සමතුලිත සාන්දුණය වැඩි කර ගැනීමට උත්පේරසයක් එකතු කළ හැක.	උත්පේරකයක් මගින් පුතිකියාවේ සකියතා ශක්තිය ඉක්ම වූ අණු භාගය වැඩි කර සඵල ගැටුම සංඛාාව වැඩි කර ඒකක කාලයක්දී ලබා දෙන ඵල පුමාණය වැඩි කරයි.
46.	පටල කෝෂ කුමය භාවිතයෙන් NaOH නිෂ්පාදනයේදී කෝෂය තුළින් වැඩි විභව අන්තරයක් යටතේ කුඩා විදාුන් ධාරාවක් යවනු ලැබේ.	පටල කෝෂ කුමය භාවිතයෙන් NaOH නිපදවීමේදී ''අඩු විදායුත් පුමාණයක් භාවිතය'' නිෂ්පාදන කියාවලියේ දක්නට ඇති වාසියකි.
47.	ලිඩල් කාෆ්ට් ඇල්කිල්කරණයේදී AtCl ₃ උන්පේරකයක් ලෙස කිුයා කරයි.	ALCL3 ලුව්ස් අම්ලයක් බැවින් ඇල්කිල් තේලයිඩයේ තැලජනය සමග සංගත බන්ධන සාදයි.
48.	අතිරික්ත වාතය සහිත නිසරු ඉන්ධන මිලුණයක් (lean mixture) මගින් CO පුමාණය අඩු නමුත් වැඩි නයිටුක් ඔක්සයිඩ පුමාණයක් සහිත පිටාර දුමක් ලබා දෙයි.	එන්පීම සුසර කිරීම මගින් පිටාර දුමෙහි සංයුකිය පාලනාය කළ හැක .
49.	0 CH3CH2- Č- NHCH3 , LiAtH4 / H2O මගින් ඔක්සිහරණය කළවීට පුකාශ සකිය ඇල්කොහොලයක් ලබාදේ.	CH3CH2CONHCH3 තනුක HC{ සමඟ පතිකියා කර. CH3CH2COC{ හා CH3NH2 කාදයි.
50.	PVC ක්ලෝටීන් අඩංගු ආකලන බහු අවයවයකි.	PVC තාප සුව්කාර්යය වේ.

3

5

6

9

• 1 · · · · · · · ·	and a started	an al transformer and a state of the		
	2017	Visahha	Chen	Grade
*	13 Find			
, , 0 4		94		
. @ 4		Θ^2		
. 3 4		20 3	6 -	
Q 5		A 3	-	
. 3		@ 3		and the second s
. @ 4		3) 5		-
, Ø 4		æ 5		
. 3 3		334		
. 9 2	1	3 9 5		
" D 3		33 3		
" 🕕 з		304		
" ₁₂ 5		@) S		
13 2	alsciencepapers .bl			
, (4) 5	,	(29) 'S		
18 5		694		
10 3		<i>G</i> 3		
20 (7) 3		14		5
21 🚺 3		<u>به</u> ۱		10 (1)
22 1 2	-	€ P S		
23 23 7 20 2	+	G 4		
24 D 3		(F) S (F) 2		
25 2 4		(f) 2 (f) 2		
ی پی پی ک		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
27 (29) 2		© 2		
28 23 1		w -		د. . الجر
29				
30		· · ·		λ
31			×	
32			1	