GENERAL CERTIFICATE OF EDUCATION ADVANCED LEVEL

(Grade 12 and 13)

COMBINED MATHEMATICS

SYLLABUS (Effective from 2017)

Department of Mathematics
Faculty of Science and Technology
National Institute of Education
Maharagama
SRI LANKA

Combined Mathematics Grade 12 and 13 - syllabus

© National Institute of Education First print 2017

ISBN:

Department of Mathematics
Faculty of Science and Technology
National Institute of Education
www.nie.lk

Printed by:

CONTENTS

1.0	Introduction	45	įV
2.0	Common National Goals		V
3.0	Basic Competencies		vi
4.0	Aims of the syllabus		viii
5.0	Relationship between the common national goals and the objectives of the syllabus		ix
6.0	Proposed plan in the allocation of competency levels in the syllabus into the school terms		X
7.0	Proposed term wise breakdown of the syllabus	1	
8.0	Syllabus.		5
9.0	Teaching learning strategies		65
10.0	Assessment and Evaluation		51
	Mathematical symbols and notations	65-	-68

1.0 INTRODUCTION

The aim of education is to turn out creative children who would suit the modern world. To achieve this, the school curriculum should be revised according to the needs of the time.

Thus, it had been decided to introduce a competency based syllabus in 2009. The earlier revision of the G.C.E. (Advanced Level) Combined Mathematics syllabus was conducted in 1998. One of the main reason for the need to revise the earlier syllabus had been that in the Learning - Teaching-Assessment process, competencies and competency levels had not been introduced adequately. It has been planned to change the existing syllabus that had been designed on a content based approach to a competency based curriculum in 2009. In 2007, the new curriculum revision which started at Grades 6 and 10 had introduced a competency based syllabi to Mathematics. This was continued at Grades 7 and 11 in 2008 and it continued to Grades 8 and 12 in 2009. Therefore, a need was arisen to provide a competency based syllabus for Combined Mathematics at G.C.E.(Advanced Level) syllabus the year 2009.

After implementing the Combined Mathematics syllabus in 2009 it was revisited in the year 2012. In the following years teachers view's and experts opinion about the syllabus, was obtained and formed a subject confittee for the revision of the Combined Mathematics syllabus by acommodating above opinions the committee made the necessary changes and revised the syllabus to implement in the year 2017.

The student who has learnt Mathematics at Grades 6-11 under the new curriculum reforms through a competency based approach, enters grade 12 to learn Combined Mathematics at Grades 12 and 13 should be provided with abilities, skills and practical experiences for his future needs. and these have been identified and the new syllabus has been formulated accordingly. It is expected that all these competencies would be achieved by pupils who complete learning this subject at the end of Grade 13.

Pupils should achieve the competencies through competency levels and these are mentioned under each learning outcomes

It also specifies the content that is needed for the pupils to achieve these competency levels. The number of periods that are needed to implement the process of Learning-Teaching and Assessment also mentioned in the syllabus.

Other than the facts mentioned regarding the introduction of the new curriculum, what had already been presented regarding the introduction of Combined Mathematics Syllabus earlier which are mentioned below too are valid.

- To decrease the gap between G.C.E. (Ordinary Level) Mathematics and G.C.E. (Advanced Level) Combined Mathematics.
- To provide Mathematics knowledge to follow Engineering and Physical Science courses.
- To provide a knowledge in Mathematics to follow Technological and other course at Tertiary level.
- To provide Mathematics knowledge for commercial and other middle level employment.
- and to show how to To provide guidance to achieve various competencies on par with their mental activities and to show how they could be developed throughout life.

2.0 Common National Goals

The national system of education should assist individuals and groups to achieve major national goals that are relevant to the individual and society.

Over the years major education reports and documents in Sri Lanka have set goals that sought to meet individual and national needs. In the light of the weaknesses manifest in contemporary educational structures and processes, the National Education Commission has identified the following set of goals to be achieved through education within the conceptual framework of sustainable human development.

- I Nation building and the establishment of a Sri Lankan identity through the promotion of national cohesion, national integrity, national unity, harmony and peace, and recognizing cultural diversity in Sri Lanka's plural society within a concept of respect for human dignity.
- II Recognizing and conserving the best elements of the nation's heritage while responding to the challenges of a changing world.
- III Creating and supporting an environment imbued with the norms of social justice and a democratic way of life that promotes respect for human rights, awareness of duties and obligations, and a deep and abiding concern for one another.
- IV Promoting the mental and physical well-being of individuals and a sustainable life style based on respect for human values.
- V Developing creativity, initiative, critical thinking, responsibility, accountability and other positive elements of a well-integrated and balance personality.
- VI Human resource development by educating for productive work that enhances the quality of life of the individual and the nation and contributes to the economic development of Sri Lanka.
- VII Preparing individuals to adapt to and manage change, and to develop capacity to cope with complex and unforeseen situations in a rapidly changing world.
- VIII Fostering attitudes and skills that will contribute to securing an honourable place in the international community, based on justice, equality and mutual respect.

3.0 Basic Competencies

The following Basic Competencies developed through education will contribute to achieving the above National Goals.

(i) Competencies in Communication

Competencies in Communication are based on four subjects: Literacy, Numeracy, Graphics and IT proficiency.

Literacy: Listen attentively, speck clearly, read for meaning, write accurately and lucidly and communicate ideas effectively.

Numeracy: Use numbers for things, space and time, count, calculate and measure systematically.

Graphics: Make sense of line and form, express and record details, instructions and ideas with line form and color.

IT proficiency: Computeracy and the use of information and communication technologies (ICT) in learning, in the work environment and in personal life.

(ii) Competencies relating to Personality Development

- General skills such as creativity, divergent thinking, initiative, decision making, problem solving, critical and analytical thinking, team work, inter-personal relations, discovering and exploring;
- Values such as integrity, tolerance and respect for human dignity;
- Emotional intelligence.

(iii) Competencies relating to the Environment

These competencies relate to the environment: social, biological and physical.

Social Environment: Awareness of the national heritage, sensitivity and skills linked to being members of a plural society, concern for distributive justice, social relationships, personal conduct, general and legal conventions, rights, responsibilities, duties and obligations.

Biological Environment: Awareness, sensitivity and skills linked to the living world, people and the ecosystem, the trees, forests, seas, water, air and life-plant, animal and human life.

Physical Environment: Awareness, sensitivity and skills linked to space, energy, fuels, matter, materials and their links with human living, food, clothing, shelter, health, comfort, respiration, sleep, relaxation, rest, wastes and excretion.

Employment related skills to maximize their potential and to enhance their capacity to contribute to economic development, to discover their vocational interests ad aptitudes, to choose a job that suits their abilities and to enact their abilities and the enact their abilities are also and the enact the enact their abilities are also and the enact their abilities are also and the enact their abilities are also and the enact the enact the enact their abilities are also and the enact the enac Included here are skills in using tools and technologies for learning, working and living.

(iv) Competencies relating to Preparation for the World of Work.

to engage in a rewarding and sustainable livelihood

(v) Competencies relating to Religion and Ethics

Assimilating and internalizing values, so that individuals may function in a manner consistent with the ethical, moral and religious modes of conduct in everyday living, selecting that which is most appropriate.

(vi) Competencies in Play and the Use of Leisure

Pleasure, joy, emotions and such human experiences as expressed through aesthetics, literature, play, sports and athletics, leisure pursuits and other creative modes of living.

(vii) Competencies relating to 'learning to learn'

Empowering individuals to learn independently and to be sensitive and successful in responding to and managing change through a transformative process, in a rapidly changing, complex and interdependent world.

4.0 AIMS OF THE SYLLABUS

- To provide basic skills of mathematics to continue higher studies in mathematics. (i)
- To provide the students experience on strategies of solving mathematical problems. (ii)
- To improve the students knowledge of logical thinking in mathematics. (iii)
- To motivate the students to learn mathematics. (iv)

It is e This syllabus was prepared to achieve the above objectives through learning mathematics. It is expected not only to improve the knowledge of mathematics but also to improve the skill of applying the knowledge of mathematics in their day to day life and character development through this new syllabus.

When we implement this competency Based Syllabus in the learning reaching process.

- Meaningful Discovery situations provided would lead to learning that would be more student centred.
- It will provide competencies according to the level of the students.
- Teacher's targets will be more specific.
- Teacher can provide necessary feed back as he/she is able to identify the student's levels of achieving each competency level.
- Teacher can play a transformation role by being away from other traditional teaching methods.

When this syllabus is implemented in the classroom the teacher should be able to create new teaching techniques by relating to various situations under given topics according to the current needs.

For the teachers it would be easy to assess and evaluate the achievement levels of students as it will facilitate to do activities on each competency level in the learning-teaching process.

In this syllabus, the sections given below are helpful in the teaching - learning process of Combined Mathematics.

A Basic Course for G.C.E (Advanced Level) Combind Mathematics

Competency	Competency Level	Content	Learning outcome	No. of Periods
1. Review of Basic	1.1 Expands algebric expressions	• Expansion of $a^2 - b^2$, $a^3 \pm b^3$ and $(a \pm b \pm c)^2$, $(a \pm b \pm c)^3$	☐ Applies the formula to simplify algebraic expression.	04
Algebra	1.2 Factorises algebraic expres sions	• Factorisation for $a^2 - b^2$, $a^3 \pm b^3$	Factorises algebraic expression by using the formule.	02
	1.3 Simplifies algebraic fractions	Addition, Subtraction, Multiplication and Division of Algebraic fractions.	Uses the knowledge of factorisation in the formulaes involved expansion	04
	1.4 Solves Equations	• Equations with algebraic fractions, simultaneous equations up to three unknowns, quadratic simultianeous equations with two variabess.	Solves equations by using factorisation formulaes involved expansion	04
	1.5 Simplifies expressions involving indices and logarithims	Rules of indicies fundamental properties of logarithies	 Simplifies expressions involves indices. Solve equations with indices. Simplifies logarithims expressions. Solves equations with logarathims 	02
	1.6 Describes and uses the properties of proportions	• Equality of two ratios is a proportion $\frac{a}{b} = \frac{c}{d} \Rightarrow a : b = c : d$ Properties of the abve proporture	 Finds values of algebraiac expression using propotions Solves equations using propotions 	02

	Competency	Competency Level	Contents	Learning outcomes	No. of Periods
2.	Geometry Analyses plane geometry	2.1 Identifies theorems involving rectangles in circle and uses is Geometry problems.	Pyhtagarus theorem acule angled theorem obtuse angled theorem applloniuis theorem.	 Describes the theorem when two chords intersect, and the theorem involved alternate segments. Uses the above theorems to solve problem. 	04
		2.2 Applies pythagoras theorem and its extensions in prob lems.	Pythagoras theorem acuto any led theorem obtuse ongle 'theorem Apollinius theorem	 Uses the theorems to prove statements. Uses the theorem to find length and angless. 	04
		2.3 Applies bise for theorem in geom. try problems.	Internal and external Angles of a triangle bisects the opposite side proportially,	Uses the theorem involved find length in triangle.	02
		2.4 Applies theorems on similartriangles in geometry.	The areas of similar triangles are proportional to the square of the corresponding sides.	Describes the theorem and uses it to solve problems.	03
		2.5 Identifies the centres of a triangles	Circum centre, Incentre, Orthocentre, Centroial medians, attitudes.	Definies the 4 centres of a triangles and uses it in problems.	02

6.0 PROPOSED TERM WISE BREAKDOWN OF THE SYLLABUS

Grade 12

Competency Levels	Subject Topics	Number of Periods
	First Term	
Combined Mathematics I		
1.1, 1.2	Real numbers	02
2.1, 2.2	Functions	04
8.1, 8.2	Angular measurements	02
17.1, 17.2	Rectangular cartesian system, Straight line	03
9.1, 9.2, 9.3, 9.4	Circular functions	12
11.1	Functions Angular measurements Rectangular cartesian system, Straight line Circular functions sine rule, cosine rule Polynomials Trigonometric identities	01
4.1, 4.2, 4.3	Polynomials	07
10.1, 10.2, 10.3, 10.4	Tilgonometri, identifies	14
5.1	Rational functions	06
6.1	Index ws an logarithmic laws	01
7.1, 7.2, 7.3	Posic properties of inequalities and solutions of inequalities	14
9.5	So vin trigonometric equations	04
Combined Mathematics II		
1.1, 1.2, 1.3, 1.4	Vectors	14
2.1, 2.2, 2.3	Systems of coplanar forces acting at a point	10
	Second Term	
Combined Mathematics I		
3.1, 3.2	Quadratic functions and quadratic equations	25
12.1, 12.2, 12.3	Inverse trigonometric functions	08
11.2	sine rule, cosine rule	06

Competency Levels	Subject Topics	Number of Periods
13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8	Limits	18
Combined Mathematics II		23
2.4, 2.5, 2.6, 2.7 3.1, 3.2, 3.3	System of coplanar forces acting on a rigid body Motion in a straight line	23
	Third Term	
Combined Mathematics I		
14.1, 14.2, 14.3, 14.4, 14.5, 14.6,	Derivative	30
14.7, 14.8 15.1, 15.2, 15.3, 15.4	Lp ₁ lications of derivatives	15
Combined Mathematics II		
	Projectiles	00
3.4	Equilibrium of three coplanar forces	08 08
2.8 2.9	Friction Newton's laws of motion	10
3.5	Work, power, energy,	10
3.6,3.7	Impulse and collision	14
3.8,3.9		15

Grade 13

Competency Levels	Subject Topics	Number of Periods
	First Term	
Combined Mathematics I		
18.1, 18.2, 18.3, 18.4, 18.5	Straight line	16
16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9	Intergration	28
Combined Mathematics II	Intergration Jointed rods	
2.10	Jointed rods	10
2.11	Frame works	10
3.10,3.11,3.12,3.13	Relative motic	30
3.14, 3.15, 3.16	Circu. r rotion	16
	Second Term	
26.1, 27.1, 27.2, 27.3, 27.4,	Circle	15
27.5		
24.1, 24.2, 24.3, 24.5	Permutations and Combinations	15
19.1	Principle of Mathematical Induction	05
20.1, 20.2, 21.1, 21.2	Series	18

Competency Levels	Subject Topics	Number of Periods
Combined Mathematics II		
4.1, 4.2 3.17, 3.18, 3.19	Probability Simple harmonic motion	10 18
2.12, 2.13, 2.14, 2.15, 2.16, 2.17	Center of mass	20
	Third Term	
Combined Mathematics I		
22.1, 22.2, 22.3	Binomial xpansion	12
23.1, 23.2, 23.3, 23.4, 23.5, 23.6	Complex Lumbers	18
25.1, 25.2, 25.3, 25.4	M trices	14
Combined Mathematics II		
4.3, 4.4, 4.5	Probability	18
5.1, 5.2, 5.3, 5.4, 5.5, 5.6 5.7, 5.8, 5.9.	Statistics	18

Subject	Number of Periods	Total			
First	Term				
Combined Mathematics I	70				
Combined Mathematics II	24	94			
Second	d Term				
Combined Mathematics I	57				
Combined Mathematics II	46	103			
Third	Term				
Combined Mathematics I	45				
Combined Mathematics II	67	112			
Fourth	Term				
Combined Mathematics I	44				
Combined Mathematics II	66	110			
Fifth	Term				
Combined Mathematics I	53				
Combined Mathematics II	48	101			
Sixth Term					
Combined Mathematics I	44				
Combined Mathematics II	36	80			

7.0 Detailed Syllabus - COMBINED MATHEMATICS - I

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
1. Analyses the system of real numbers	1.1 Classifies the set of real numbers	 Historical evolution of the number system Notations for sets of numbers □ , □ + ,□ , □ ', □ , □ + Geometrical representation of real numbers Number line. 	 □ Explains the evolution of the number systems □ Represents are Interpreted geometrically 	
	1.2 Uses surds or decimals to describe real numbers	 Decimal representation of a rearminer Decimal infinite decimals, recurring decimals, and non-recurring decimals Simplification of expressions involving surds 	☐ Classifies decimal numbers ☐ Rationalises the denominator of expressions with surds	01
2. Analyses single variable functions	2.1 Review of functions	 Intuitive idea of a function Constants, Variables Expressions involving relationships between two variables Functions of a single variable Functional notation Domain, codomain and range One - one functions Onto functions Inverse functions 	 □ Explains the intuitive idea of a function □ Recognizes constants, variables □ Relationship between two variables □ Explains inverse functions □ Explain Domain, Codomain □ Explains One - one functions explains onto functions 	02

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	2.2 Reviews types of functions	 Types of functions Constant functions, linear functions, piece-wise functions, modulus (absolute value) function Graph of a function Composite functions 	 ☐ Recognizes special functions ☐ Sketches the graph of a functions ☐ Finds composite functions 	02
3. Analyses quadratic functions	3.1 Explores the properties of quadratic functions	 Quadratic functions Definition of a quadratic function f(x) ≡ ax² + bx + c; a → c ; □ and a ≠ 0 f Completing the square Discrimment I operties of a quadratic function g createst value, least value g Existence / non-existence of real zeros g Graphs of quadratic functions 	introl uce quadratic functions □ plains what a quadratic function is □ Sketches the properties of a quadratic function □ Sketches the graph of a quadratic function □ Describes the different types of graphs of the quadratic function □ Describes zeros of quadradic functions	
	3.2 Interprets the roots of a quadratic equation	 Roots of a quadratic equation Sum and product of the roots Equations whose roots are symmetric expressions of the roots of a quadratic equation Nature of roots using discriminant Condition for two quadratic equations to have a common root Transformation of quadratic equations 	 □ Explaneing the Roots of a quadratic equation □ Finds the roots of a quardatic equation □ Expresses the sum and product of the roots of quadratic equation in terms of its coefficient □ Describes the nature of the roots of a quardatic equation □ Finds quadratic equations whose roots are symmetric expressions of α and β 	15

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
			 □ Solves problems involving quadratic functions and quadratic equations □ Transforms roots to other forms 	
4. Manipulates Polynomial functions	4.1 Explores polynomials of a single variable	Polynomials of single variable polynomials Terms, coefficients, degree, leading term, leading coefficient	 □ Defines a polynomial of a single variable □ Distinguishes among linear, quadratic and cubic fur tions □ States the longitions for two polynomial to be identical 	01
	4.2 Applies algebraic operations to polynomials	Addition, subtraction maniplication division and long livis on	 → Explains the basic Mathematical operations on polynomials □ Divides a polynomial by another polynomial 	01
	4.3 Solves p. oblems r sing Remainde raieore. v. Factor theorem an hits converse	 Division algorithm Synthetic division Remainder theorem Factor theorem and its converse Solution of polynomial equations 	 □ States the algorithm for division □ States and prove remainder theorem □ States Factor theorem □ Expresses the converse of the Factor theorem □ Solves problems involving Remainder theorem and Factor theorem. □ Defines zeros of a polynomial □ Solves polynomial equations (Order ≤4) 	05

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
5. Resolves rational functions into partial fractions	5.1 Resolves rational function into partial fractions	 Rational functions Proper and improper rational functions Partial fractions of rational functions With distinct linear factors in the denominator With recurring linear factors in the denominator With quadratic factors in he denominator With quadratic factors in he denominator 	 □ Defines rational functions □ Defines proper rational functions and improper rational functions □ Finds partial fractions of proper rational finctions (upto 4 unknown) □ F. tia fractions of impropper irat ona function (upto 4 unknowns) 	06
6. Manipulates index and logarithmic laws	6.1 Uses index laws and log, ithmic laws a so ve problems	 Ine index laws Logarithmic laws of base Change of base 	 Uses index laws Uses logarithmic laws Uses change of base to solve problems 	01

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
7. Solves inequalities involving real numbers	7.1 States basic properties of inequalities	 Basic properties of inequalities including trichotomy law Numerical inequalities Representing inequalities on the real number line Introducting intervals using inequalities 	 □ Defines inequalities □ States the trichotomy law □ Represents inequalities on a real number line □ Denotes inequalities in terms of interval notation 	04
	7.2 Analyses inequalities	 Inequalities involving simple algebra of functions Manipulation of the ear, use atticand rational it equalities Finding the conutions of the above in qualities algebraically graphically 	Solves inequalities involving algebra	1
	7.3 Solves inequalities involving modulus (absolute value) function	 Inequalities involving modulli (absolute value) Manipulation of simple inequalities involving modulus (absolute value) sign Solutions of the above inequalities algebraically graphically 	of a real number Sketches the graphs involving	

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
8. Uses relations involving angular	8.1 States the relationship between radians and degres	Angulur measure The angle and its sign convention Degree and radian measures	 ☐ Introduces degrees and radians as units of measurement of angles ☐ Convert degrees into radian and vice-versa 	01
measures	8.2 Solves problems involving arc length and area of a circular sector	Length of a circular arc, $S = r\theta$ The Area of a circular sector, $A = \frac{1}{2}r^2\theta$	☐ Find the leath of an arc and area of a circ har ector	01
9. Interpretes trignometric funtions	9.1 Describes basic trigonometric (circular) functions	Basic trigonometric rentrens Definition of the ix basic trigonometric functions, domain and range		04
	9.2 Derives values of basic trigonometric functions at commonly used angles	• Values of the circular functions of the angles $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3} \text{ and } \frac{\pi}{2}$	 ☐ Finds the values of trigonometric functions at given angles ☐ States the sign of basic trigonometric function in each quadrant 	01

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	9.3 Derives the values of basic trigonometric functions at angles differing by odd multiples of $\frac{\pi}{2}$ and integer multiples of π	1 11.8.101110111011101111111111111111111	Describes the periodic properties of circular functions Describes the trigonometric relations of $(-\theta), \frac{\pi}{2} \pm \theta, \pi \pm 0, \frac{3}{2}\pi + \theta, 2\pi \pm \theta$ In teams of $(-\theta)$ and the values of circular functions at given angles	03
	9.4 Describes the behaviour of basic trigonometric functions graphically	• Graphs of the basic trigonometric functions a. A their periodic properties	 □ Represents the circular functions graphically □ Draws graphs of combined circular functions 	04
	9.5 Finds general solutions	• General solutions of the form $\sin \theta = \sin \alpha$, $\cos \theta = \cos \alpha$ and $\tan \theta = \tan \alpha$	☐ Solves trigonometric equations	04

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
10.Manipulates trigonometric identities	10.1 Uses Pythagorean identities	Pythagorean identities Trigonometric identities	 □ Explains an identity □ Explains the difference between identities and equations □ Obtains Pythagorian Identities □ Solves problem, involving Pythagorian Identitie 	
	10.2 Solves trigonometric problems using sum and difference formulae	Sum and difference formulae Applications involving simand difference formulae	Constructs addition formulae Uses addition formulae	02
±	10.3 Solves trigonometric problems using product-sum and sum-product for rula	Product-sum, s. m-product formulae Applications involving product-sum and sum - product formulae	Manipulates product - sum, and Sum - product formulae Solves problems involving sum - product, product - sum formulae	05
	10.4 Solves trigonometric problems using Double angles, Triple angles and Half angles	 Double angle, triple angle and half angle formulae solutions of equations of the form a cos θ+b sin θ = c , where a,b,c ∈ □ 	 □ Solves problems using double, tripple and half angles □ Derives trigonometric formula for double, trible and half angles □ Solves equations of the form a cos θ + b sin θ = c only finding solutions is expected) 	. 03

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
11. Applies sine rule and cosine rule to solve trigonomet-	11.1 States and proves sine rule and cosine rule	Sine rule and cosine rule	 ☐ Introduces usual notations for a triangle ☐ States and prove sine rule for any triangle ☐ States and prove cosine rule for any triangle 	01
ric problems	11.2 Applies sine rule and cosine rule	Problems involving sine rule and cosine rule	☐ Solvesp. b) ms we ing sine rule and ce in rule	06
12. Solves problems involving	12.1 Describes inverse trignometric functions	Inverse trignometric functionsPrincipal values	 □ Defines inverse trignometric functions □ States the domain and the range of inverse trigonometric functions 	02
inverse trigonomet- ric functions	12.2 Represents in trse functions graphially	, ketching graphs of inverse trignometric functions sin ⁻¹ , cos ⁻¹ , tan ⁻¹	 □ Draws the graph of an inverse trigonometric functions 	02
	12.3 Solves problems involving inverse trignometric functions	Problems involving inverse trigonometric functions	 □ Solves simple problems involving inverse trigonometric functions 	04

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
13. Determines the limit of a function	13.1 Explains the limit of a function	• Intuitive idea of $\lim_{x \to a} f(x) = l \text{ , where } a, l \in \square$	 □ Explains the meaning of limit □ Distinguishes the cases where the limit of a function does not exist 	02
	13.2 Solves problems using the theorems on limits	Basic theorems on limits and their applications	Li. Txp esses the theorems on limits.	03
	13.3 Uses the limit $\lim_{x \to a} \left(\frac{x^n - a^n}{x - a} \right) = na^{n-1}$ to solve 1 rob em	• Proof $f im \left(\frac{x'-a}{x-a}\right) = na^{n-1}$, there n is a rational number and its applications		03
	13.4 Uses the limit $\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1 \text{ to}$ solve problems	 Sandwich theorem (without Proof) Proof of lim_{x→0} (sin x/x) = 1 and its applications 		03

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	13.5 Interprets one sided limits	 Intuitive idea of one sided limit Right hand limit and left hand limit: lim _{x→ a⁺} f(x), lim _{x→ a⁻} f(x) 	 ☐ Interprets one sided limits ☐ Finds one sided limits of a given function at a given real number 	02
	13.6 Find limits at infinity and its applications to find limit of rational functions	• Limit of a rational function as $x \to \pm \infty$ • Horizontal asymptotes	☐ Interprets line is a infinity ☐ Explains a prizental asymptotes	02
	13.7 Interprets infinite limits	Infinite limits Vertical (syn. atc es u ing one sided lim 's)	Explains vertical asymptotes	01
	13.8 Interpret continuity at a point	Intuitive idea of continuity	☐ Explains continuity at a point by using examples	02

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
14. Differenti- ates functions using suit- able meth-	14.1 Describes the idea of derivative of a function	 Derivative as the slope of tangent line Derivative as a limit Derivative as a rate of change 	 □ Explains slope and tangent at a point □ Defines the derivative as a limit □ Explains rate of change 	06
ods	14.2 Determines the derivatives from the first principles	• Derivatives from the first principles • x^n , where n is a rational number • Basic trigonometric functions • Functions formed by elementar, algebraic operations on the above	Finds derivatives from all first principles	05
	14.3 States and uses the theorems on differentiation 14.4 Differentiates inverse	• Thecems on differentiation • Constant multiple rule • Sum rule • Product rule • Quotient rule • Chain rule	 □ States basic rules of derivative □ Solves problems using basic rules of derivatives 	03
	trigonometric functions	Derivatives of inverse trigonometric functions	 ☐ Finds the derivatives of inverse trignometric functions ☐ Solves problems using the derivatives of inverse tricnomatric functions 	03

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	14.5 Describes natural exponential function and find its derivative	i ine properties or matarar emponement	 □ Defines the exponential function (e^x) □ Express domain and range of exponential function □ States that e is an irrational number □ Describes the properties of the e^x □ Writes are est mates of the value of e □ Write the 'erroritive of the exponential function and uses it to solve problems □ The graph of y = e^x 	
	14.6 Describes natural logarithmic function	 Properties of Actural logarithmic function Definition of natural logarithmic function, ln x or log_e x(x > 0), as the inverse function of e^x, its domain and range d/dx(ln x) = 1/x, for x > 0 Graph of ln x Definition of a^x and its derivative 	 □ Defines the natural logarithmic function □ Expresses the domain and range of the logarithmic function □ Expresses the properties of lnx □ The graph of y = lnx □ Defines the function a^x for a > 0 □ Expresses the domain and the range of y = a^x □ Solves problems involving logarithmic function □ Deduces the derivative of lnx □ Deduces the derivative of a^x □ Solves problems using the derivatives of lnx and a^x 	03

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	14.7 Differentiates implicit functions and parametric functions	 Intuitive idea of implicit functions and parametric functions Differentiation involving Implicit functions and parametric equation including parametric forms at parabola y² = 4 ax and clipse x²/a² + y²/b² = 1 and hyperabola 	 □ Defines implict functions □ Finds the derivatives of implicit functions □ Differentiates parametric function □ Writes down the equation of the tangent and normal at a given point to a given curve 	
	14.8 Obtains dent atives of higher order	Successive differentiation • Derivatives of higher order	 □ Finds derivatives of higher order □ Differentiates functions of various types □ Find relationship among various orders of derivatives 	1 1

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
15. Analyses the behaviour of a function using derivatives	15.1 Investigates the turning points using the derivative	 Stationary points Increasing / decreasing functions Maximum points (local), minimum points (local) Point to inflection First derivative test and second derivative test 	 □ Defines stationary points of a givin function □ Describes local (relative) maximum and a local minimum □ Employs the rest definative test to find the maximum na dominimum points of a function □ States that there exists stationary points which are neither a local maximum nor a local minimum □ Introduces points of inflection □ Uses the second order derivative to test whether a turning points of a given function is a local maximum or a local minimum 	
	15.2 Investigates the concavity	Concavity and points of inflection	 Uses second derivative to find concavity 	02
	15.3 Sketches curves	Sketching curves only (including horizontal and vertical asymptotes)	☐ Sketches the graph of a function	04
	15.4 Applies derivatives for practical situations	horizontal and vertical asymptotes)Optimization problems	 Uses derivatives to solve real life problems 	04

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
16. Find indefinite and definite Integrales	16.1 Deduces indefinite Integral using anti-derivatives	• Integration as the reverse process of differentiation (anti - derivatives of a function)	☐ Finds indefinite integrals using the results of derivative	03
of functions	16.2 Uses theorems on integration	Theorems of integration	☐ Uses theorem on magnation	02
o th	16.3 Review the basic properties of a definite integral using the fundamental theorem of calculus	 Fundamental Theorem of Calcu us Intuitive idea of the effinite in egil De inite integral and upproperties Evaluation of definite integrals 	 □ Uses the fundamental theorem of calculus to solve problems □ Solves definite integral problems □ Uses the properties of definte integral 	02
	16.4 Integrates atic all unctions using appreviate methods	Indefinite integrals of functions of the form $\frac{f'(x)}{f(x)}; \text{ where } f'(x) \text{ is the derivative of } f(x) \text{ with respect to } x$	Uses the formula	05
	16.5 Integrates trigonometric expressions using trigonometric identities	 Use of partial fractions Use of trigonometric identities	 Uses of partial fractions for integration Uses trigonometric identities for integration 	03

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	16.6 Uses the method of substitution for integration	Integration by substitution	Uses suitable substitutions to find intergrals	04
	16.7 Solve problems using integration by parts	Integration by parts	Uses I steg ation by parts to solve proviems	03
	16.8 Determines the area of a region bounded by curves using integration	A	 Uses definite integrals to find area under a curve and area between two curves 	04
	16.9 Deter hines the volume of revolution	• Use of the formulae $\int_{a}^{b} \pi (f(x))^{2} dx$ to find the volume of revolution	Uses integration formula to find the volume of revolution	02

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
17. Uses the rectangular system of Cartesian axes and geometrical results	17.1 Finds the distance between two points on the Cartesian plane	Treetangalar Cartesian Coordinates	 □ Explains the Cartesian coordinate system □ Defines the abscissa and the ordinate □ Introduces he tour uadrants in the art sian soc dinate plane □ Find the length of a line segment joining two points 	01
	17.2 Finds Co-ordivates of the point a stangt to straight line seguent joining two given points in a given ratio	Coordinates of the point that divides a line segment joining two given points in a given ratio internally externally	 Finds Co-ordinates of the point dividing the straight line segment joining two given points internally in a given ratio Finds Co-ordinates of the point dividing the straight line segment joining two given points externally in a given ratio 	02

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
18. Interprets the straight line in terms of Cartesian co-ordinates	18.1 Derives the equation of a straight line	• Straight line ightharpoonup Inclination (angle), gradient (slope) ightharpoonup Intercepts on the x and y axes ightharpoonup Various forms of equation of a straight line	 ☐ Interprets the gradient (slope) of a line and the x and y intercepts ☐ Derives various forms of equation of a straight line 	05
	18.2 Derives the equation of a straight line passing through the point of intersection of two given non parallel straight lines	 Point of intersection of two non parallel straight ines The equation of the straight line parallel straight line parallel straight line parallel straight lines 	☐ Finds the Cordinates of the point of intersection of two non parallel straight lines ☐ Finds the equation of the line passing through the intersection of two given lines	02
	18.3 Describe the relative post or of two points wit respect to a given strught line.		☐ Finds the Condition fortwo points to be on the same side or an opposit sides of a given line	02
	18.4 Finds the angle between two straight lines	 Angle between two straight lines The relationship between the gradients of pairs of parallel lines perpendicular lines 	 ☐ Finds condition for two lines to be parallel or perpendicular ☐ Finds the angles between two given lines by using their gradients 	02
	18.5 Derives the perpendicular distance from a given point to a given straight line	 Parametric equation of a straight line Perpendicular distance from a point to a straight line Equations of bisectors of the angles between two intersecting straight lines 	 □ Derives parametric equation of a straight line Find perpendicular distance from a point to a given line using parametric equation of the line □ Finds the equations of angular bisectors of two non parall straight lines 	00

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
19. Applies the principle of Mathematical Induction as a type of proof for Mathematical results for positive integers	19.1 Uses the principle of Mathematical Induction	Method of mathematical induction Principle of Mathematical Induction Applications involving, divisibility, summation and Inequalities	 States the principles of Mathematical Induction □ Proves the various results using principle of Mathematical Induction 	05
20. Finds sums of finite series	20.1 Describes finite series and their properties	• Sigma notation • $\sum_{r=1}^{n} (U_r + V_r) = \sum_{r=1}^{n} U_r + \sum_{r=1}^{n} V_r$ • $\sum_{r=1}^{n} kU_r = k \sum_{r=1}^{n} U_r$; where k is a constant	 □ Describes finite sum □ Uses the properties of "∑ " notation 	03

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	20.2 Finds sums of elementary series	Arithmetric series and geometric series $\sum_{r=1}^{n} r, \sum_{r=1}^{n} r^{2}, \sum_{r=1}^{n} r^{3} \text{ and their applications}$	Finds general term and the sum of AP, GP, Proves and uses the formulae for values of $\sum_{r=1}^{n} r^{2}$, $\sum_{r=1}^{n} r^{3}$ to find the summation of series	05
21 Investigates infinite series	21.1 Sums series using various methods	Summation of series Method of a ffer nace Method of a ffer nace Method a partial fractions Principle of Mathematical Induction	Uses various methods to find the sum of a series	08
	21.2 Uses partial sum to detemine convergence and divergence	*	 ☐ Interprets sequences ☐ Finds partial sum of an infinite series ☐ Explains the concepts of convergence and divergance using partial sums ☐ Finds the sum of a convergent series 	03

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
22. Explores the binomial expansion for positive integral indices	22.1 Describes the basic properties of the binomial expansion	Binomial theorem for positive integral indices Binomial coefficients, general term Proof of the theorem using mathematical Induction	 □ States binomial theorem for positive integral indices. □ Writes general term and binomial coefficient □ Proves the fix ore a using Mathematal In Juction 	03
	22.2 Applies binomial theorem	 Relationships among the bit onto coefficients Specific terms 	 ✓ rites the relationship among the binomial coefficients ☐ Finds the specific terms of binomial expansion 	06
23. Interprets the system of complex numbers	23.1 Uses the Compex number system	 Imaginary unit Introduction of □, the set of complex numbers Real part and imaginary part of a complex number Purely imaginary numbers Equality of two complex numbers 	 □ States the imaginary unit □ Defines a complex number □ States the real part and imaginary part at a complex number □ Uses the equality of two complex numbers 	02

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	23.2 introduces algebraic operations on complex numbers	• Algebraic operations on complex numbers $z_1 + z_2, \ z_1 - z_2, \ z_1 \cdot z_2, \ \frac{z_1}{z_2} \ (z_2 \neq 0)$	 □ Defines algebraic operations on complex numbers □ Uses algebraic operations between two complex numbers and verifies that they are also continued plex numbers □ Exic per tio so algebraic operations 	
	23.3 Proves basic properties of complex conjugate	• Definition of \overline{z} • Proc is of the folio vin tres lts: $ \begin{array}{ccc} & \overline{z_1 + z_2} &= \overline{z_1 + \overline{z_2}} \\ & \overline{z_1 + z_2} &= \overline{z_1 - z_2} \\ & \overline{z_1 \cdot z_2} &= \overline{z_1} \cdot \overline{z_2} \end{array} $ $ \begin{array}{ccc} & \overline{z_1} &= \overline{z_1} &= \overline{z_1} \\ & \overline{z_2} &= \overline{z_1} &= \overline{z_2} \end{array} $	 □ Defines z̄ □ Obtains basic properties of complex conjugate □ Proves the properties 	02
	23.4 Define the modulus of a complex number	• Definition of $ z $, modulus of a complex number z • Proves of the following results: • $ z_1 \cdot z_2 = z_1 \cdot z_2 $ • $\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$ if $z_2 \neq 0$ • $z \cdot \overline{z} = z ^2$ • $ z_1 + z_2 ^2 = z_1 ^2 + 2\operatorname{Re}(z_1 \cdot z_2) + z_2 ^2$	 □ Defines the modulus And of a complex number z □ Proves basic properties of modulus □ Applies the basic properties 	04

applications of the above results

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	23.5 Ilustrates algebraic operations geometrically using the Argand diagram	 The Argand diagram Representing z = x + iy by the point (x, y) Geometrical representations of z₁ + z₂, z₁ - z₂, z̄, λz where λ∈□ Polar form of a non z o complex ramber Definition farg (z) Definition farg (z) Definiting Arg z, principal value of the argument z is the value of θ satisfying -π < θ ≤ π Geometrical representation of z₁ · z₂, z̄₁; z₂ ≠ 0 r(cos α + i sin α), where α ∈ □, r > 0 λz₁ + μz₂/λ + μ , where λ, μ ∈ □ and λ + μ ≠ 0 		04

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
		proof of the triangle inequality $ z_1 + z_2 \le z_1 + z_2 $ Deduction of reverse triangle inequality $ z_1 - z_2 \le z_1 - z_2 $	 □ Proves the triangle inequality □ Deduces the reverse triangle inequality □ Uses the above inequalities to solve problems 	
	23.6 Uses the DeMovier's theorem 23.7 Identifies locus / region of a variable complex number	State and prove of the DeMovier's Theorem Elementary applications of DeMovier's theorem	States and prove of the DeMovier's Theorem Solves problems involvings Elementary applications of	02
		Locus of $ z-z_0 = k \text{ and } z-z_0 \le k $ $ z-z_0 = k \text{ and } z-z_0 \le k $ $ z-z_0 \le \alpha $	DeMovier's theorem ☐ Sketchs the locus of variable complex numbers in Argand diagram ☐ Obtains the Cartesian equation of a locus	04

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
24.Uses permutations and combinations as	24.1 Defines factorial	 Definition of n!, the factorial n for n ∈ □ + or n = 0. General form Recursive relation 	 □ Defines factorial □ States the recursive relation for factorials 	01
mathematical models for sorting and	24.2 Explains fundamental principles of counting	Techniques regarding the principles of counting	L Explains the fundamental principle of	02
arranging	24.3 Use of permutations as a technique of solving mathematical problems	• Permutations • Defi ition • The rotation nP_r and the formulae When $0 \le r \le n$; $\gamma \in Z^+$	 □ Defines ⁿP_r and obtain the formulae for ⁿP_r. □ The number of permutations of n different objects taken r at a time □ Finds the number permutations of different objects taken all time at a time □ Permutation of n objects not all different □ Explains the cyclic permutations □ Finds numer of permutations of n different objects not all different taken r at a time 	06

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	24.4 Uses combinations as a technique of solving mathematical problems	 Combinations Definition Define as ⁿC_r and finds a formulae for ⁿC_r Distinction between permutation and combnation 	 Defines combination Define as ⁿC_r and finds a formulae for ⁿC_r Finds the number Combinations of ⁿ dir brent of best taken r at a time where r (0 ≤ r ≤ n) Emplains the distinction between permutations and combinations 	
25. Manipulates matrices	25.1 Describes basic properties of matrices	 De inition and notal on lements, rows, columns Size of a matrix Row matrix, column matrix, square matrix, null matrix Equality of two matrices Meaning of λA where λ is a scalar Properties of scaler product Definition of addition Properties of addition 	 □ Defines a matrix □ Defines the equality of matrices □ Defines the multiplication of a matrix by a scalar □ Explains special types of matrices □ Uses the addition of matrices □ Writes the condition for compatibility 	02

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
		 Subtractions of matrices Multiplication of matrices Compatibility Definition of multiplication Properties of multiplication 	 □ Defines subtraction using addition and scaler multiplication □ Writes the conditions for compatibility □ States and uses the properties of multiplication as a very problems 	
	25.2 Explains special cases of square matrices	• Square matrices • Order of a square matrix • Identity matrix, diagonal natrix, symmetric mat x, skew symmetric matrix • Trian ular matries (upper, lower)	☐ I'en ifies the order of a square metrices ☐ Classifies the different types of matrices	02
	25.3 Describes the transpose and the inverse of a matrix	 Transpose of a matrix Definition and notation Inverse of a matrix Only for 2×2 matrices 	 ☐ Finds the transpose of a matrix ☐ Finds the inverse of a 2x2 matrix 	03
	25.4 Uses matrices to solve simultaneous equations	 Solution of a pair of linear equations with two variables Solutions graphically The existence of a unique solutions, infinitely many solutions and no solutions graphically 	 □ Solves simultaneous equations using matrices □ Illustrates the solutions graphically 	04

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
26. Interprets the Cartesian equation of a circle	26.1 Finds the Cartesian equation of a circle	 Equation of a circle with origin as the cetre and a given radius Equation of a circle with a given centre and radius 	 □ Defines circle as a locus of a variable point such that the distance from a fixed point is a constant □ Obtains the quair of a circle □ Interprets he eneral equation of a circle □ Linds the equation of the circle having two given points as the end points at a diameter 	03
27.Explores Geometric properties of circles	27.1 Describes the position of a straight line relative to a circle	 onditions use a circle and a straight line intersects, touches or do not intersect Equation of the tangent to a circle at a point on circle 	 □ Discuses the position of a straight line with respect to a circle □ Obtains the equation of the tangent at a point on a circle 	02
	27.2 Finds the equations of tangents drawn to a circle from an external point.	i an evternal noint	 □ Obtains the equation of the tangent drawn to a circle from an external point □ Obtains the length of tangent drawn from an external point to a circle □ Obtains the equation of the chord of contact 	03

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	27.3 Derives the general equation of a circle passing through point of intersection of a given straight line and a given circle		Interprets the equation $S + \lambda U = 0$	02
	27.4 Describes the position of two circles	Position of two circles Intersection of two circles Non-intersection of two circles Two circles touching extendily To circles touching 1 ternally Controlled bying within the other	☐ Scribes he condition for two circles to Touch externally or Touch internally ☐ Discribes To have one circle lying within the other circle	03
	27.5 Finds the condition for two circle to intersect orthogonally	Condition for two circles to enter seet orthogonaly	☐ Finds the condition for two circles to intersect orthogonally	02

COMBINED MATHEMATICS - II

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
1. Manipulates Vectors	1.1 Investigates vectors	 Introduction of scalar quantities and scalars Introduction of vector quantities and vectors Magnitude and direction of a vector Vector notation Algebraic, Geometric Null vector Notation for magnital 'e (nodulus) of a vector Equality of two vectors Trial gle law of vector addition Multiplying a vector by a scalar Defining the difference of two vectors as a sum Unit vectors Parallel vectors Condition for two vectors to be parallel Addition of three or more vectors Resolution of a vector in any directions 	 □ Explains the differneces between scalar quantities and scalars □ Explains the differnece between vector quantity and vectors. □ Pepre entral vectors. □ Pepre entral vector geometrically expresses the algebraic notation of a vector □ Defines the modulus of a vector □ Defines -a, where a is a vector □ States the conditions for two vectors to be equal □ States the triangle law of addition □ Deduces the paralle logram law of addition □ Adds three or more vectors □ Multiplies a vector by a scalar □ Subtracts a vector from another □ Identifies the angle between two vectors □ Identifies parallel vectors □ States the conditions for two vectors to be paralles 	03

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
Competency	1.2 Constructs algebraic system for vectors 1.3 Applies position vectors to solve problems	 laws for vector addition and multiplication by scaler Position vectors Introduction of i and j Position vector relative to the 2D Cartesian Co-ordinate system Application of the following results If a and b are non - zero and non - parallel vectors and if 	 □ State the conditions for two vectors to be parallel □ Defines a "unit vector" □ Resolves a vector in a given directions □ States the properties of addition and multiplication by a scaler □ Defines position vectors □ Expresses the position vector of a point in terms of the cartesian co-ordinates of that point □ Adds and subtracts vectors in the form xi + yj □ Proves that if a, b are two non zero, 	01 06
		$\lambda \underline{a} + \mu \underline{b} = \underline{0}$ then $\lambda = 0$ and $\mu = 0$	non - parallel vectors and if $\lambda \underline{a} + \mu \underline{b} = \underline{0} \text{then} \lambda = 0 \text{and}$ $\mu = 0$ $\square \text{Applications of the above results}$	

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	1.4 Interprets scalar and vector product	 Definition of scalar product of two vectors Properties of scalar product ^a · b = b · a (Commutative law) ^a · (b + c) = a · b + a · c (Distributive law) Condition for two non-zero vectors to be perpendicular Introduction of a Definition of ectal product of two vector Properties of vector product a ∧ b = -b ∧ a 	 □ Defines the scalar product of two vectors □ States that the scalar product of two vectors is a scalar □ States the properties of scalar product □ In erp ets scalar product geometrically □ Solves simple geometric problems involving scalar product □ Define vector product of two vectors □ States the properties of vector product (Application of vector product are not expected) 	04
2. Uses systems of coplanar forces	2.1 Explains forces acting on a particle	 Concept of a particle Concept of a force and its representation Dimension and unit of force Types of forces Resultant force 	 □ Describes the concept of a particle □ Describes the concept of a force □ States that a force is a localized vector □ Represents a force geometrically □ Introduces different types of forces in mechanics □ Describes the resultant of a system of coplaner forces acting at a point 	02

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	2.2 Explains the action of two forces acting on a particle	 Resultant of two forces Parallelogram law of forces Equilibrium under two forces Resolution of a force in two given directions in two directions perpendicy of the each other 	 □ States the parall-elogram law of forces to find the resultant of two forces acting at a point □ Uses the parall logram law to obtain formula to letermine the resultant of the parallelogram law of forces □ Solve problems using the parallelogram law of forces □ Writes the condition necessary for a particle to be in equilibrium under two forces □ Resolves a given force into two components in two given directions □ Resolves a given force into two components perpendicular to each other 	
	2.3 Explains the action of a systems of coplanar forces acting on a particle.	 Define coplanar forces acting on a particle Resolving the system of coplanar forces in two directions perpendicular to each other Resultant of the system of coplanar forces method of resolution of forces graphical method 	 □ Determines the resultant of three or more coplanar forces acting at a point by resolution □ Determines graphically the resultant of three or more coplanar forces acting at a particle □ States the conditions for a system of coplanar forces acting on a particle to be in equilibrium 	

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
		• Conditions for equilibrium • null resultant vector $ \underline{R} = X \underline{i} + Y \underline{j} = \underline{0} $ • Vector sum = $\underline{0}$ or, equivalently, $ X = 0 \text{ and } Y = 0 $ • Completion of Polygon of forces	Writes the condition for eqilibrium (i) $\underline{R} = \underline{0}$ $\underline{R} = X\underline{i} + Y\underline{j} = 0$ $X = 0, Y = 0$ Completes a polygon of forces.	
	2.4 Explains equilibrium of a particle under the action of three forces.	 Triangle Law Lami's Theorem Pro' lems invo ving lan 'i's aneorem 	 Explains what is meant by equilibrium. States the conditions for equilibrium of a particle under the action of three forces States the theorem of triangle of forces, for equilibrium of three coplanar forces States the converse of the theorem of triangle of forces States Lami's theorem for equilibrium of three coplanar forces acting at a point Proves Lami's Theorem. Solves problems involving equilibrium of three coplanar forces acting on a particle 	

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	2.5 Explains the Resultant of coplanar forces acting on a rigid body	 Concept of a rigid body Principle of transmission of forces Explaining the translational and rotational effect of a force Forces acting on a rigid body Defining the moment of a force about a point Dimension and unit of notice. Phys. cal meaning of moment of force about 2 point Commercial interpretation of moment General principle about moment of forces Algebraic sum of the moments of the component forces about a point on the plane of a system of coplanar forces is equivalent to moment of the resultant force about that point 	forces Explains the ran lation and rotation of a force Define the moment of a force about a point and its sense States the dimensions and units of moments Represents the magnitude of the moment of a force about a point ageometrically	

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
2.	Explains the effect of two parallel coplanar forces acting on a rigid body	 Resultant of two forces When the two forces are not parallel When the two forces are parallel and like When two forces of unequal magnitude are parallel and unlike Equilibrium under two forces Introduction of a couple Moment of a couple Magnitude ard sence of the moment of couple The homent of a couple is independent of the point about which the moment is taken Equivalence of two coplanar couples Equilibrium under two couples Composition of coplanar couples 	States the conditions for the equilibrium of a volumes acting on a rigid by y L'escribe a caple Calculates the moment of a couple States that the moment of a couple is independent of the point about which the moment of the forces is taken	06

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	2.7 Analyses a system of coplanar forces acting on a rigid body	 A force (F) acting at a point is equivalent to a force F acting at any given point together with a couple Reducing a system of coplanar forces to a single force R acting at a given point together with a couple of moment G Magnitude, direction and line of action of the resultant Conditions for the reduction for fsystem of coplanar forces to a single force: \[\frac{1}{2} \overline{Q} \(\text{ X} \neq 0 \] or \(\text{ Y} \neq 0 \) \(\text{ Isingle force} \): \[\frac{R}{2} \overline{Q} \(\text{ X} \neq 0 \) and \(\text{ Y} \neq 0 \) and \(\text{ G} \neq 0 \). \[\frac{G}{2} \overline{Q} \] \[\frac{G}{2} \overline{Q} \] Problems involving equlibrium of rigid bodies under the action of coplanar forces 	Shows that a force acting at a point is equivalent to the combination of an equal force acting at an other point togethed with a couple Addices a system of coplanar forces to a single force acting at an arbitrary point O and a couple of moment G Reduces any coplanar system of forces to a single force and a couple acting at any point in that plane (i) Reduces of a system of coplanar forces to a single force (X≠0 or Y≠0) (ii) Reduces of a system of forces to a couple when X=0. Y=0 and G≠0 (iii) Expresses conditions for	

Competency		Competency Level	Contents	Learning outcomes	No. of Periods
	2.8	Explains the Equillibrium of three coplanar forces acting on a rigid body	All forces must be either concurrent or all parallel Use of Triangle Law of forces and its converse Lami's theorem Cotangent rule Geometrical properties Resolving in two perpendicula directions	 States conditions for the equilibrium of three coplanar forces acting on a rigid body Finds unknown 2 rece when a rigid body is in € with brit n 	08
	2.9	Investigates the effect of friction	 Introduction of snooth and rough surface. Frictional rorce and its nature Advantages and disadvantages of friction Limiting frictional force Laws of friction Coefficient of friction Angle of friction Problems involving friction 	 □ Describes smooth surfaces and rough surfaces □ Describes the nature of frictional force □ Explains the advantages and disadvantages of friction □ Writes the definition of limiting frictional force □ States the laws of friction □ defines the angle of friction and the coefficient of friction. □ Solves problems involving friction 	10
	2.10	Applies the properties of systems of coplanar forces to investigate equilibrium involving smooth joints	 Types of simple joints Distinguish a movable joint and a rigid joint Forces acting at a smooth joint Applications involving jointed rods 	 □ States the type of simple joints □ Describes the movable joints and rigid joints □ Marks the forces acting on a smooth joints □ Solves the problems involving joined rods 	10

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	2.11 Determines the stresses in the rods of a framework with smoothly jointed rods	 Frameworks with light rods Conditions for the equilibrium at each joint at the framework Bow's notation and stress diagram Calculation of stresses 	 □ Describes a frame work with light rods □ States the condition for the equilibrum at each joint in the frame work □ Uses Bow's notation □ Solves problem involing a rame work with light roll 	
	2.12 Applies various techniques to determine the centre of mass of symmetrical uniform bodic.	 Definition of centre of mass Centre of mass of a pane bod symmatrical about a line Uniform this rod Uniform rectangular lamina Uniform circular ring Uniform circular disc Centre of mass of a body symmetrical about a plane Uniform hollow or solid cylinder Uniform hollow or solid sphere Use of thin rectangular stripes to find the centre of mass of a plane lamina and use of it in finding the centre of mass of the following lamina Uniform triangular lamina Uniform lamina in the shape of a parallelogram 	Defines the centre of mass of a system of particles in a plane Defines the centre of mass of a lamina Finds the centre of mass of uniform bodies symmetrical about a line Finds the centre of mass of bodies symmetrical about a plane Finds centre of mass of a Lammina of different shapes	

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	2.13 Finds the centre of mass of simple geometrical bodies using integration	 Centre of mass of uniform continuous symmetric bodies Circular arc, circular sector The centre of mass of uniform symmetric bodies Hollow right circular cone Solid right circular cone Hollow hemisphere Solid hemisphere Segment of a hollowsphere Segment of a solid sphere 	☐ Finds the centre of mass of symmetrical bodies using integration	06
	2.14 Finds the centre of mass (centre of gravity) of composite bodies and remaining bodies	 Centre of mass of composite bodies Centre of mass of remaining bodies 	 ☐ Finds the centre of mass of composite bodies ☐ Finds the centre of mass of remaining bodies 	04
	2.15 Explains centre of gravity	 Introduction of centre of gravity Coincidence of the centre of gravity and centre of mass 	☐ States the centre of mass and centre of gravity are same under gravitational field.	
	2.16 Determines the stability of bodies in equilibrium	Stability of equilibrium of bodies resting on a plane	☐ Explains the stabillity of bodies in equilibrium using centre of gravity	02
	2.17 Determines the angle of inclination of suspended bodies	problems involving suspended bodies	□ Solves problem involving suspended bodies	02

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
3. Applyes the Newtonian model to describe the instantaneous motion in a plane	3.1 Uses graphs to solve problems involving motion in a straight line	 Distance and speed and their dimensions and units Average speed, instantaneous speed, uniform speed Position coordinates Displacement and velocity and their dimensions and units Average velocity, instantance is velocity uniform velocity Displatement - time graphs Average velocity between two positions Instantaneous velocity at a point Average acceleration, its dimensions and units Instantaneous acceleration, uniform acceleration and retardation Velocity-time graphs Gradient of the velocity time graph is equal to the instantaneous acceleration at that instant 	 □ Defines average speed □ Defines instantaneous speed □ Defines uniform speed □ States dimensions and tondard units of speed □ States that distance and speed are scalar quentiues □ Defines position coordinates of a particle undergoing rectilinear motion □ Defines Displacement □ Expresses the dimension and standard units of displacement □ Defines average velocity □ Defines uniform velocity □ Expresses dimension and units of velocity □ Draws the displacement time graphS 	

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
		The area signed between the time axis and the velocity time graph is equal to the displacement described during that time interval The area signed between the time axis and the velocity time graph is equal to the displacement described during that time interval The area signed between the time axis and the velocity time graph is equal to the displacement described during that time interval	 □ Finds the average velocity between two positions using the displacement time graph □ Determines the instantaneous velocity using the displacement time graph □ Define acc lartion □ Express at the dimension and unit of acceleration □ Defines average acceleration □ Defines instantaneous acceleration □ Defines uniform acceleration □ Defines retardation □ Draws the velocity time graph □ Finds average accelaration using the velocity time graph □ Finds the acceleration at a given instant using velocity - time graph □ Draws velocity time graphs for different types of motion □ Solves problems using displacement time and velocity-time graphs 	08

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	3.3 Investi, at a relative notion between podies moving in a straight line with constant acceleration.	formulae [†] Using definitions [†] Using velocity - time graphs $ \left(v = u + at, \ s = \frac{u + v}{2}t, \ s = ut + \frac{1}{2}at^2, \ v^2 = u^2 + 2as\right) $ • Vertical motion under constant acceleration due to gravity [†] Use of graph, and kink hat call equations • Frame of reference for one dimensional motion	 □ Derives kinematic equations for a particle moving with uniform acceleration □ Derives inematic equations using volocity - tome graphs □ Uses kinematic equations for vertical anotion under gravity □ Uses kinematics equations to solve problems □ Uses velocity - time and displacement - time graphs to solve problems □ Describes the concept of frame of reference for two dimensional motion □ Describes the motion of one body relative to another when two bodies are moving in a straight line □ States the principle of relative displacement for two bodies moving along a straight line □ States the principle of relative velocity for two bodies moving along a straight line 	06

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
			☐ States the principle of relative acceleration for two bodies moving along a straight line ☐ Uses kinematic equation and graphs related to motion for two bodies moving along the same straight line with from an relative acceleration	
	3.4 Explains the motion of a particle on a plane.	 Position vector relative to the origin of a moving particle Velocity ind acceleration when the position vector is given as a function or time 	Finds relation between the cartesian coordinates and the polar coordinates of a point moving on a plane Finds the velocity and acceleratain when the position vector is givin as a function of time	06
	3.5 Determines the relative motion of two particles moving on a plane	 Frame of reference Displacement, velocity and acceleration relative to a frame of reference Introduce relative motion of two particles moving on a plane Principles of relative displacement, relative velocity, and relative acceleration. Path of a particle relative to another particle Velocity of a particle relative to another particle 	 □ Defines the frame of reference □ obtains the displacement and velocity and acceleration relative to frame of reference □ Explains the principles of relative displacement, relative velocity, and relative acceleration □ Finds the path and velocity relative to another particle 	06

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	3.6 Uses principles of relative motion to solve real word problems	 Shortest distance between two particles and the time taken to reach the shortest distance The time taken and position when two bodies collide Time taken to describe a given path Use of vectors 	 Uses the principles of relative motion to solves the problems Finds the shortest distance between two particles Finds an requirements for collision of two bodies 	10
	3.7 Explains the motion of a projectile in a vertical plane	 Giver the initial position and the initial velocity of a projected particle he horizon all and vertical components of (i) velocity (ii) displacement, after a time t Equation of the path of a projectile Maximum height Time of flight Horizontal range Two angles of projection which give the same horizontal range Maximum Horizontal range 	 □ Introduces projectile □ Describes the terms "velocity of projection" and "angle of projection" □ States that the motion of a projectile can be considered as two motions, separately, in the horizontal and vertical directions □ Applies the kinematic equations to interpret motion of a projectile □ Culculates the components of velocity of a projectile after a given time □ Finds the components of displacement of a projectile in a given time 	08

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
			 □ Calculates the maximum height of a projectile □ Culculates he time taken to reach the maximum height of a piectile □ Calculates the rize at all range of a projectile and as maximum □ Statist that in general there are two angles of projection for the same horizontal range for a given velocity of projection □ Finds the maximum horizontal range for a given speed □ For a given speed of projection finds the angle of projection giving the maximum horizontal range □ Derives Cartesian equations of the path of a projectile □ Finds the time of flight □ Finds the angles of projection to pass through a given point 	

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	3.8 Applies Newton's laws to explain motion relative to an inertial frame	 Newton's first law of motion concept of mass linear momentum and inertial frame of reference Newton's second law of motion Absolute units and gravitional units of force Distinguish between reight and makes Newton's thin 'llaw of hothon Application on new on's laws (under constant for e only) Bodies in contact and particales connected by light inextensible string 	 □ States Newton's first law of motion □ Defines "force" □ Defines inear momentum of a particle □ States tha linear nomentum is a vector □ quitity □ States the dimensions and unit of linear momentum □ Describes an inertial frame of reference □ States Newton's second law of motion □ Defines Newton as the absolute unit of force □ Derives the equation F = ma from second law of motion □ Explains the vector nature of the equation F = ma □ States the gravitational units of force □ Explains the difference between mass and weight of a body □ Describes "action" and "reaction" □ States Newton's third law of motion □ Solves problems using F = ma □ Bodies in contact and particles connected by light inevtencible strings □ System of pullys, wedges (maximum 4 pullys) 	15

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	3.9 Interprets mechanical energy	 Definition of work work done by constant force Dimension and units of work Introduce energy,its dimensions and units Kinetic energy as a type of mechanical energy Definition of kinetic energy for a particle work energy equation for kinetic energy Disssipative and conservative forces Potential energy as a type of mechanical energy Definition of potential energy Definition of gravitational potential energy work energy equation for potential energy Definition of elastic potential energy Expression for the elastic potential energy The work done by a conservative force is independent of the path described Principle of conservation of mechanical energy and its applications 	 □ Writes work - energy equations □ Explains conservation of mechanical Energy and applies to solve problems □ States dimension and units of energy 	08

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	3.10Solves problems involving power	 Definition of power its dimensions and units Tractive force(F) constant case only Definition and application of Power= tractive force x velocity (P=F.V) 	 □ Defines Power □ States its units and dimensions □ Explains the tractive force □ Derives the for multifor power □ Uses tractive force when impluse is consumt 	08
	3.11Interprets the effect of an impulsive action	 Impulse as a vector its dimension and units <u>I</u> = (m<u>v</u>) For aula Loss or kinetic energy due to an impulsive action 	 □ Explains the Impulsive action □ States the units and Dimension of Impulse □ Uses <u>I</u> = Δ m<u>v</u> to solve problems □ Finds the change in Kinetic energy due to impulse 	05
	3.12Uses Newton \ law of restitution to direct elastic impact	 Newton's law of restitution Coefficient of restitution (e), 0 < e ≤ 1 Perfect elasticity (e = 1) Loss of energy when e < 1 Direct impact of two smooth elastic spheres Impact of a smooth elastic sphere moving perpendicular to a plane 	 □ Explains direct impact □ States Newton's law of restitution □ Defines coefficient of restitution □ Explains the direct impact of a sphere on a fixed plane □ Calculates change in kinetic energy □ Solves problems involving direct impacts 	10
	3.13 Solves problems using the conservation of linear momentum	Principle of conservation of linear momentum	☐ Solves problem ousing the priciple of linear momentum	04

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	3.14 Investigates velocity and acceleration for motion in circuler	 Angular velocity \(\theta\) and angular acceleration \(\theta\) of a particular moving on a circle Velocity and acceleration of a particle moving on a circle 	 □ Defines the angular velocity and acceleration of a particale moving in a circle □ Find the velocity and the acceleration of a particle 1 oving 1 a circle 	06
	3.15 Investigates motion in a horizontal circle	 Motion of a particle attached to an old of a light in extensible a ring whose other end is fixed, or a snooth herizontal pline Onical pend, but 	 Fin is the magnitude and direction of the force on a particle moving in a horizontal circle with uniform speed solves the problems involving motion in a horizontal circle solves the problems involving conical pendulam. 	04
	3.16 Investigates he relevent principles for motion on a vertical circle	 Applications of law of conservation of energy uses the law <u>F</u> = ma Motion of a particle on the surface of a smooth sphere inside the hollow smooth sphere suspende from an inextensible, light string attached to a fixed point threaded in a fixed smooth circular vertical wire In a vertical tube 	particle suspended from an inelastic light string attached to a fixed point, in vertical circle. Discusses the motion of a particle on the	

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
3.17	3.17 Analyses simple harmonic motion	 Definition of simple harmonic motion Characterstic equation of simple harmonic motion, and its solutions Velocity as a function of displacement The amplitude and period Displacement as a function of time Interpretation of simple harmonic motion by uniform circular potion, and finding time 	 □ Defines simple harmonic mortion(SHM) □ Obtain the differential equation of simple harmonic motion and verifies raise eral solutions □ Outal is the velocity as a function of displacement □ Defines amplitude and period of SHM □ Describes SHM associated with uniform circular motion and finds time 	04
	3.18 Describe the neture of a simple har conic motion on a horizontal line	1 Chiston in a clastic string	 ☐ Finds the tension in an elastic string. Tension or thust in a spring using Hookes Law ☐ Describes the nature of simple Harmonic motion on a horizontal line 	
	3.19 Describes the nature of a simple harmonic motion on a vertical line	1	 □ Explains the simple Harmonic motion on a vertical line □ Solves problem with combination of simple harmonic motion and motion under gravity. 	06

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
4. Applies mathematical models to analyse random events	4.1 Interprets events of a random experiment	 Intuitive idea of probability Definition of a random experiment Definition of sample space and sample points Finite sample space Infinite sample space Events Definition Simple event, composite events, null even complementary events, Union of two events, intersection of two events Mutually exclusive events Exhaustive events Equally probable events Event space 	 □ Explains random experiment □ Defines and event □ Explains event si ace □ Explains event si ace □ Explains event si ace □ Classifies the events finds union and intersection of events 	04
	4.2 Applies probability models to solve problems on random events	1	 ity and its limitations States the axiomatic definition □ Proves the theorems on probability 	06

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
		 Theorems on probability with proofs [†] Let A and B be any two events in a given sample space (i) P(A')=1-P(A) where A' is the complementry event of A (ii) Addition rule [†] P(A∪B)=P(A)+P(B)-P(A∩A) [†] If A⊆P \(\text{u. in } \(A\)\(\text{P}(A)\) 	probability and its limitation.	
	4.3 Applies the concept of conditional probability to determine the probability of a random vent unler given condition.	Definit n of conditional probability Theorems with proofs let A, B, B_1, B_2 be any four events is a given sample space with $P(A) > 0$. then (i) $P(\varnothing A) = 0$ (ii) $P(B' A) = 1 - P(B A)$, (iii) $P(B_1 A) = P(B_1 \cap B_2 A) + P(B_1 \cap B_2' A)$ (iv) $P[(B_1 \cup B_2) A] = P(B_1 A) + P(B_2 A) - P(B_1 \cap B_2 A)$ • Multiplication rule • If A_1, A_2 are any two events in a given sample space with $P(A_1) > 0$ then $P(A_1 \cap A_2) = P(A_1) \cdot P(A_2 A_1)$		08

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	4.4 Uses the probability model to determine the independence of two or three events	 Independence of three events Pairwise Independence Mutually Independence 	Uses independent two or three events to not solve problems	04
	4.5 Applies Bayes theorem	 Part. ion of a sample space Theorem on total probability, with proof Baye's Theorem 	 □ Defines a partition of a sample space □ States and prove on theorem of total probability □ States Baye's theorem and applies to leave problems 	06

C	ompetency	Competency Level	Contents	Learning outcomes	No. of Periods
5.	Applies scientific tools to develop decision	5.1 Introduces the nature of statistics	Definition of statisticsDescriptive statistics		01
	 Ungrouped data Data with frequency distributions Grouped data with frequency distributions Veighted at the tricemean 	 Ungrouped data Data with frequency distributions Grouped data with frequency distributions 	Finds the ential tendency measures s Lescribes the mean, median and mode as measures of central tendency	03	
		tion using measers of relative	ungrouped and grouped data with frequency distributions	l fina annous ann diataileantians	04

Competency	Competency Level	Contents	Learning outcomes	No. of Periods
	5.4 Describes measure of dispersion	• Introduction to Measures of dispersion and their importancy • Types of dispersion measurements • Range • Inter Quartile range and Semi inter - quartile range • mean deviation • variance and standard deviation • ungrouped lata • ungrouped data with requency distributions • group action with frequency • distributions • pooled mean • pooled variance • Z - score	 Uses suitable measure dispersion to make decisions on frequency distribution States the measures of dispersion and their importancy ∠abla a poole I mean, variance at Z-score 	08
	5.5 Determines the shape of a distribution by using measures of skewness.	 Introduction to Measures of skewness Karl Pearson's measures of skewness 	☐ Defines the measure of skewness Determines the shapes of the distribution using measures of skewness	. 02

8.0 TEACHING LEARNING STRATEGIES

To facilitate the students to achieve the anticipated outcome of this course, a variety of teaching stategies must be employed. If students are to improve their mathematical communication, for example, they must have the opportunity to discuss interpretations, solution, explanations etc. with other students as well as their teacher. They should be encouraged to communicate not only in writing but orally, and to use diagrams as well as numerial, symbolic and word statements in their explanations.

Students learn in a multitude of ways. Students can be mainly visual, auditory or kinesthetic learners, or employ a variety of senses when learning. The range of learning styles in influenced by many factors, each of which needs to be considered in determining the most appropriate teaching strategies. Research suggests that the cltural and social background has a significant impact on the way students learn mathematics. These differences need to be recognised and a variety of teaching strategies to be employed so that all students have equal access to the development of mathematical knowledge and skills.

Learning can occur within a large group where the class is taught as a whole and also within a small gruop where students interact with other members of the group, or at an individual level where a student interacts with the teacher or another student, or works independently. All arrangements have their place in the mathematics classroom.

9.0 SCHOOL POLICY AND PROGRAMMES

To make learning of Mathematics meaningful and relevant to the students classroom work ought not to be based purely on the development of knowledge and skills but also should encompass areas like communication, connection, reasoning and problem solving. The latter four aims, ensure the enhancement of the thinking and behavioural process of childern.

vide the o_i For this purpose apart from normal classroom teaching the following co-curricular activities will provide the opportunity for participation of every child in the learning process.

- Student's study circles
- Mathematical Societies
- Mathematical camps Ú
- Contests (national and international)
- Use of the library
- The classroom wall Bulletin Ú
- Mathematical laboratory Ú
- Activity room
- Collectin historical data regarding mathematics
- Use of multimedia
- **Projects**

It is the responsibility of the mathematics teacher to organise the above activities according to the facilities available. When organising these activities the teacher and the students can obtain the assistance of relevant outside persons and institution.

In order to organise such activities on a regular basis it is essential that each school develops a policy of its own in respect of Mathematics. This would form a part of the overall school policy to be developed by each school. In developin the policy, in respect of Mathematics, the school should take cognisance of the physical environment of the school and neighbourhood, the needs and concerns of the students and the community associated with the school and the services of resource personnel and institutions to which the school has access.

MATHEMATICAL SYMBOLS AND NOTATIONS

The following Mathematical notation will be used.

1. Set Notations

€	an element	\cup	union
∉	not an element	\cap	intersect on
$\{x_1,x_2,\dots\}$	the set with elements x_1, x_2, \ldots	[<i>a</i> , <i>b</i>]	to each interval $\{x \in R : a \le x \le b\}$
$\{x /\}$ or $\{x :\}$	the set of all x such that	(a,b]	the interval $\{x \in R : a < x \le b\}$ the interval $\{x \in R : a \le x < b\}$
n(A)	the number of elements in set A		
Ø	empty set	(, b)	the open interval $\{x \in R : a < x < b\}$
ξ	universal set	2. Mi	scellaneous Symbols
\mathbf{A}'	the complement of the ret A	2. 1111	·
П	the set of netur I nur ibers,	=	equal
	{1, 2, 3}	≠	not equal
		=	identical or congruent
	the set of integers $\{0, \pm 1, \pm 2, \pm 3, \dots\}$		approximately equal
_ +	the set of positive integers $\{1, 2, 3,\}$	∞	proportional
	the set of rational numbers	<	less than
	the set of real numbers	Ÿ	less than or equal
	the set of complex numbers	>	greater than
_	-	I I	greater than or equal
\subseteq	a subset	∞	infinity
	a proper subset	\Rightarrow	ifthen
М	not subset	•	if and only if (iff)
⊄	not a proper subset	\Leftrightarrow	ii and only ii (iii)

3. Operations

$$a+b$$
 a plus b

$$a-b$$
 a minus b

$$a \times b$$
, $a \cdot b$ a multipllied by b

$$a \div b$$
, $\frac{a}{b}$ a divided by b

$$\sum_{i=1}^{n} a_{i} \qquad a_{1} + a_{2} + \ldots + a_{n}$$

$$\sqrt{a}$$
 the positive square 1 of f the positive real number a

$$|a|$$
 the mode lus of the real number a

$$n!$$
 n factorial where $n \in \square^+ \cup \{0\}$

$${}^{n}P_{r} = \frac{n!}{(n-r)!} \quad 0 \le r \le n \qquad n \in \square^{+}, \quad r \in \square^{+} \cup \{0\}$$

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}, 0 \le r \le n \qquad n \in \square^{+}, r \in \square^{+} \cup \{0\}$$

4. Functions

f ((x))	the	func	tin	of	λ

$$f: A \rightarrow B$$
 f is a function where each element of set A has an

$$f: x \to y$$
 he incum f maps the element x to the element y

$$g \circ f(x)$$
 the composite function of g of f

$$\lim_{x \to a} f(x)$$
 the limit of $f(x)$ as x tends to a

$$\delta x$$
 an increment of x

$$\frac{dy}{dx}$$
 the derivative of y with respect to x

$$\frac{d^n y}{dx^n}$$
 the n^{th} derivative of y with respect to x

$$f^{(1)}(x), f^{(2)}(x), \ldots, f^{(n)}(x)$$

the first, second, ...,
$$n^{th}$$
 derivatives of $f(x)$

with respect to
$$x$$

$$\int y dx \qquad \text{indefinite integral of } y \text{ with respect to } x$$

$$\int_{a}^{b} y dx$$
 definite integral of y w.r.t x in the interval $a \le x \le b$

$$\dot{x}$$
, \ddot{x} , ... the first, second,... derivative of x with respect to

time

5. Exponential and Logarithmic Functions

 e^x exponential function of x

 $\log_a x$ logarithm of x to the base a

 $\ln x$ natural logarithm of x

 \lg_x logarithm of x to base 10

6. Cricular Functions

sin, cos, tan cosec, sec, cot

the circular functions

 \sin^{-1} , \cos^{-1} , \tan^{-1} \csc^{-1} , \sec^{-1} , \cot^{-1}

he inverse circular functions

7. Complex Numbers

i the square root of - 1

z a complex number, z = x + i y

$$= r \left(\cos \theta + i \sin \theta \right)$$

Re(z) the real part of z, Re(x+iy) = x

Im(z) the imaginary part of z, Im (x+iy) = y

|z| the modulus of z

arg(z) The argument of z

Arg(z) the principle argument of z

 \overline{z} the complex conjugate of z

8. Matrices

M a matrix M

 M^T the transpose of the matrix M

 M^{-1} the inverse of the marix I

det M the ac en unant o the matrix M

9. Vectors

 \underline{a} or \boldsymbol{a} the vector a

 \overrightarrow{AB} the vactor represented in magnitude and direction by the

directed line segment AB

 \underline{i} , j, \underline{k} unit vectors in the positive direction of the cartesian axes

 $|\mathbf{a}|$ the magnitude of vector a

| AB| the magnitude of vector AB

 $\mathbf{a} \, \Box \, \mathbf{b}$ the scalar product of vectors a and b

 $\mathbf{a} \times \mathbf{b}$ the vetor product of vectors a and b

10. Probability and Statistics

A, B, C ect.. events

 $A \cup B \qquad \qquad \text{union of the events A and B}$

 $A \cap B \qquad \qquad \text{intersection of the events } A \text{ and } B$

P(A) probability of the event A

A' complement of the event A

P(AxB) probability of the event A given that event B occurs

mments

X, Y, R, ... random variables

 x, y, r, \dots ect. values of the random variables X, Y, R etc.

 x_1, x_2, \dots observations

 f_1, f_2, \dots frequencies with which the observations

 x_1, x_2, \dots occur

 \overline{x} Mean

 σ^2 Variance

 σ / S / SD Standard deviation