All Right Reserved

Sripali Vidvalaya che Vidyalaya chemistry laya chemistry Sripa chemistry Sripali Vid

G.C.E. Advanced Level Examination 2023 Sripalee College - Horana

va chemistry Sripali mistry Supali Vidya ry Supali Vidyalaya sali Vidyalaya chem-

m-

istry Sripali Vidyalaya chemistry Sripali Vidyalaya chemistry Sripali Vidyalaya chemistry Sripali Vidyalaya chemistry Sripali Vidvalava chemis Vidyalaya chemistry Srir

First Term test - 2023 April

lyalaya chemistry Scipali hemistry Sripali Vidya-

che Chemistry

istr

try Sripali Y ipali Vidyal

alaya chemistry Sripah Vidyal ili Vidyalaya ch alaya chemisti

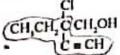
Two hours

Name / Index No.:

Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Avogadro constant $N_s = 6.022 \times 10^{23} \text{ mol}^{-1}$

Plank constant $h = 6.626 \times 10^{-14}$ Js Speed of light $C = 3 \times 10^{4}$ m s⁻¹

01. Select Correct combination from the below given list.


///////	-M.O.C	100	1000	4.00	
-477L	TO	2 U C	30 E I	4	5
Charge of election	Miliicon	Millicon	Plank	de Broglie	de Broglie
quantun numbers	Plank	Plank	Millicon	Plank	Plank
Wave- partide duality of	de Broglie	de Broglie	de Broglië	Rutherford	Thomson
first nuclear model of atom	Thomson	Rutherford	Rutherford	Thomson	Rutherford
e/m ratio of cathode rays	Rutherford	Thomson	Thomson	Millicon	Millicon

- 02. Which of the following election transmission has the highest energy. Within the visible range of line spectrum of atomic hydragen (n = principle quantum number)
 - $n=4 \rightarrow n=1$ _(I)
- $\sqrt{(2)}$ n=5 \rightarrow n=1
- $n=2 \rightarrow n=1$ (43)
- J(4) n=5→n=2
- (5) n=4→n=2
- 03. Correct combination representing basic electron pair geometry and shape derived from it is,
 - Planar triangular bent **ノ(1)**

(2) Tetrahedral - bent

Tetrahedral - pyramidal L(3)

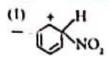
- (4) Trigonal bipyramidal linear
- Trigonal bipyramidal pyramidal **L(5)**
- 04. Correct IUPAC name of the below given compound is,

- 2-ethyl-2-chlorobut-3-yne-1-ol (2) 2-chloro-2-ethylbut-3-yne-1-ol
- (4) 3-chloro-3-ethyl-4-hydroxy-1-butyne 2-chloro-2-ethyl-3-ynol
- 3-chloro-3-ethyl-4-hydroxybut-1-yne

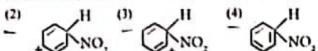
$\overline{}$			_								
05.	Mo	lecular form	ula of the	simplest un	saturated	i hydrocar	bon which	show enant	iomer is	m and d	liasteresmeris
	(1)	C, H,		C, H,	(3)	C,H,	(4)	C,H,	(5)	$C_{\mathbf{i}}H_{\mathbf{i}\mathbf{i}}$	
06.	Am	monium sal	t which	emit a gas u	pon the	mal deco	mposition	which is no	ither N	H, nor N	l, is,
	(1)	NH,NO,	(2)	NH,NO,	9	(NH,),C	r ₂ O, (4)	(NH,),SO,	(5)	(NH ₄);	co,
07.	Нус	fration enth	alpy of 3	K(s) and mo	lar entr	opy of X(nq) nespo	etively are	70 J K	mol 4	and +170 J K
	mol	' Molar en	tropy of	X(s) in (J K	mol-1)	is,			2	*	meter -
	ω	+ 240		-240	(3)	0	(4)+1	00	(5)	- 100	7 ¹
08.	Volu	ume of 1.0 n	nol dm ⁻³ l	HCI in cm' r	eeded to	titrate wi	th a mixtu	re of equal v	olume c	of I mold	lm ⁻³ NaOH an
	2 m	oldm ⁻³ KOF	I with a t	otal volume	of in 25	.0 cm³ the	presence	of phenolph	thalein :	as the inc	dicator is,
	(1)	12.5	(2)	25	(3)	37.5	(4)	38	(5)	45	
09.							Fe2: SO	³(aq) conun	tration	in this so	olution in mo
		is, $(N = 1$. T. 1								
	1.	9,412	(3)	0.00	(1)	0.026	(1)	0.001	(-)	Uttra	
10.	Poss	-				•	1.5	olay ideal bel	aviour.		
	(1)	100 K.	1 x 105	Pa		1000 K,			983200	575736	
	(3)	1000 K,	1 Pa		(4)	15 K,	2 x 10) Pa	_(5)	25 K,	1 x 10° Pa
1	Con	ect IUPAC	name fo	r, K,[Fe(CN),] is,						
	(1)	tetrapotas	siumhex	scyanidofen	rate (11)		(2)	potassiumh	exacyan	idoferra	te (III)
	(3)	Contract Contract		nidoferrate			(4)	tetrapotassi	umhexa	cyanidoi	iron(III)
	(5)	7.7	/\	ecyanidoiro	n(II)	2 1	0.00	-			
2.	Poss	ible reaction	n via C	group is	4.0		p:	ape	ers	5 (grp
	(1)	nucleophil	kadditio	n		(2) elect	trophilic s	ubstitution			
	(3)	electrophil	ic additi	ion		(4) elim	ination	(5	<u>)</u> .	• 7	hydration
3.	Inco	rrect statem	ent regar	ding CH _i Cl	I=CHC	ңсно і	is,				
	(1)			ple colour o	of acidic	KMnO ₄					
	(2)	Decolorize									
		Forms a da									
	(4)				Prominat	tion follow	ved by de	hydrobromi	cycitan		
	(5)	Shows dias	tereome	rism.							
4.	Incor	rect step in	chiorina	ion of meth	ane is,						
	(1)	CH, V	:н, —	→ CH,C	н,		(2)	CH, C	ı —	→ CF	LCI
ı,	an.	300	7 cı —	→ 2°CI			(4)	W (H	٧ <u>/ ()</u>	V.Y	ĊH.+ CI
-	-	^	100					.3 "	C1 -	-CI ->	cn,+ ci
٠.(5)	H,CIC I	HW	či —	CH,CH	HCI					
	-										

Consider the following compounds

CH,COOH


CH,CH=CH,

си,си,си,


D

Correct order of increasing acidity of above given compounds is,

- (1) A < B < C < D
- (2) A < C < B < D
- (3) D < C < A < B
- (4) D < A < B < C
- (5) C < A < D < B
- 16. Which of the following is not a possible strusture in nitration mechanism of Benzene

17. Molecule which has the shaps similar to that of POCl, is,

- Correct oder of increasing radii of Ne, Mg2, Al", Cl
 - (1) Al" < Ne < Mg" < Cl

(2) Al" < Mg2" < Ne < Cl

(3) Ne < Al" < Mg" < Cl

(4) Al" < Mg" < CI < Ne

- (5) Mg2 < Al < C1 < Ne
- Compound which release gaseous products only upon thermal decomposition is, 19.
 - (I) KNO,

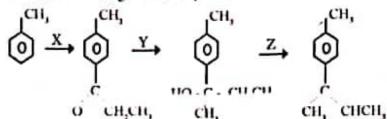
(2) (NH₄), Cr₂O,

(3) PbS,O,

- (5) (NH₂), CO,
- Which of the following statement is true regarding the compressibility factor (z) for real gases. 20.
 - (1) Value equals to 1 all the time.
 - (2) value is not similar to 1 all the time.
 - (3) Value merely equals to 1 at low pressure and low temperature condition.
 - (4) Shows a positive deviation with pressure all the time.
 - (5) Value of Z merely equals to 1 at low pressure and high temperature condition.
- Which of the below given molecule has zero dipole moment. 21.
 - (1) H,S
- (3) CH₂Cl₃
- (4) SO,
- (5) HBr
- De Broglie wave length for a particle with a mass of 1.67 x 10⁻²⁴ g is 122 pm. The travelling speed of the 22. particle in ms1 is, (1 pm = 1012 m)
 - (I) 1.50 x 10°
- (2) 6.50 x 10³
- (3) 3.25 x 10¹
- (4) 4.14 x 103
- (5) 2.25 x 10³
- Successive ionzation energy values of element A is given below in kJ mol-I 23...

IE, 1012 IE, 1907 IE, 2914 IE, 4964 IE, 6274

21267


The group of element A belongs is,

- (1) 5
- (2) 6
- (3) 14
- (4) 15
- (5) 16

- Composition of Cr in a water sample is 1.25 ppm Cr composition of the above sample in moldm-3 is,
 - (1) 3.00 x 10°
- (2) 2.40 x 10⁻⁵
- (3) 6.50 x 10⁻⁴
- (4) 1.25 x 10³
- (5) 1.40 x 10°
- Compound which forms a white participate with excess water is,
 - (1) BiCl,
- (2) AICI,
- (3) SCI,
- (4) PCI,
- (5) SiCl₄

- 26. Characteristic type of reaction in alkene is
 - (1) Electrophilic addition
 - (3) Elimination
 - (5) Acid Base reaction

- (2) Electrophilid Substitution
- (4) Nucleophile addition
- 27. Consider the following reaction sequence

Correct order of reagents used in X, Y, Z respectively are,

- (I) CH,CH,-C-CI
- CH,MgBr
- anhyclrous Al,O,

- anhyclrous AICI,
- ii. dry ett !

- (2) CH,CH,- C anhyclrous AICI,.
- i. LIAIH, ii. dry ether
- Concentrated H,SO, Δ

- (3) CH,CH,-C
- CH,MgBr
- anhyclrous Al,O,

- anhyelrous AICI,
- ii. H7H,0

- (4) CH,CH,CI anhyclrous AICI,
- i. CH,CH,Br
- anhycirous AI,O,

- ii. Mg/ dry ether

- (5) i. CH,CH,-Br ii. Mg/dry ether.
- i. LiAlH,
- Concentrated H,SO,

- ii. H7H,O
- 28. Which of the following couple forms a white precipice upon mixing with each other
 - (1) BaCl,(aq) and KOH(aq)
- (2) MgNO₁(aq) and K,SO₂(aq)
- (3) MgCl₂(aq) and NaOH(aq)
- (4) dilute H,SO4(aq) and Na,CO4(aq)
- (5) BaCl,(aq) and K,CrO,(aq)
- Species which does not show bleaching action is
 - (I) H,O,
- (2) SO,
- (3) NaClO,
- (4) HOCI

50.	Vessel A contains OH cas a	1 27 % and	Snpalee College - Horan
	speed of CH, and O, gas is	C'CH. CO,	B contains O ₂ gas at 327 °C Ratio of root mean square (O=16, C=12, H=1)

(1) 4:1

(4) 1:1

Summary of instructions from question numb

	2	3	4	5
Only (a) And (b) are correct	Only (b) And (c) are correct	Only (c) And (d) are correct	Only (a) And (d) are correct	any other num- ber of combina tion of respons es correct

31. Which of the following statement's is / are true,

(a) strongest acid is HClO,

(b) Out of all weakest acid is HOCl

- (b) HCIO, acid can not act as a reducing agent
- (c) Oxidation number of Cl in HClO, is +6
- 32. Which of the following statement / s is/ are true regarding chemical reactions
 - (a) ΔS > O for all spontaneous reactions
 - (b) ΔH > O for all spontaneous reactions
 - (c) ΔG = O for all a reaction at equilibrium
 - (d) Both ΔH and ΔS for forward and back ward reactions either positive or negative for a reaction at equilibrium.
- Which of the following statement/s is / are incorrect, 33.
 - (a) Alkyl halides can undergo nucleophile substitution as well as elimination reactions.
 - (b) Characteristic reaction of alkenes and alkynes is electrophilic addition.
 - (c) Characteristic reaction of benzene is electrophile addition, s
 - (d) Benzene can undergo electrophile substitution reactions under harsh conditions
- 34. Which of the following reactions generate sulphare as a product
 - (a) Adding diute HCl into aqueous sodium sulphide .
 - (b) Adding dilute H,SO, acid into aqueous sodium thosulphate
 - (c) Bubbling H,S gas through aqueous iron(III) solution 1
 - (d) Reacting H,S and SO, gases together.
- Which of the following statement/s is is/ are correct, 35...
 - (a) Titanium can form compounds with + IV oxidation state,
 - (b) Oxidation state of Mn can be changed from +7 to +6 and +4.
 - (c) All titanium compounds are colourless
 - (d) Dichromate ions react in alkaline medium to form chromate ions.
- Which of the following set/s. Has/ have a molecule with an unpaired election. 36.
 - (a) NO, CCI, CO,
- (b) NO, H,S, O, (c) SO, II,SO, HNO,

37.	Correct response which include acidic and basic oxides onl	y
-----	--	---

- (a) CO, K,O, SO,
- (b) ZnO, NO, NO
- (c) MnO, Al,O, BeO
- (d) SO, Na,O, MgO

38. Which of the following statement's is always correct regarding (CH₂), - C - OH

- (a) It gives an instant turbidity upon addition of anhydrous ZnCl, and concentratal HCl
- (b) It doesn't react with aqueous KCN ~
- (c) It doesn't react with aqueous NaOH
- (d) It doesn't react with aqueous CH, -C-H

39. Correct response/s including non-polar molecules only,

- (a) CO, CCI, SO,
- (b) BeCl., BF., BCl,
- (c) NO, HCL PCI,
- (d) HNO, NH, SO,

(a) Decomposition of H,O,

- (b) Hydolysis of NCI,
- (c) Reaction of H,S with SO,
- (d) Reaction of Cl. gas with NaOH

Summary of instruction from question number 41 -50

Which of the Collection is I be disconnection of a Com-

Response	first statement	Second statement
1	True	True and correctly explans the first statement
2	True	True but does not explan the first statement correctly
3	True	False
4	True	True
5	True	False

First Statement	Second Statement
41. Vinyl halides as well as aryl halides do not show nucleophile substitution reactions	C-X bond in Vinyl halides and Aryl halides carry partial double bond nature
42. Highest melting point is recorded in Mn among elements From Sc - Zn	Sc is a transition element
43. Equal volumes of CO ₂ and N ₂ gases at 350 K and 10 atm carry equal number of molecules.	Equal volumes of different gases at constant temperature and constant pressure carry equal number of molecules
 Filter paper soaked with H7 K₁Cr₂O₂ can be used to distinguish SO₂ and H₂S gases. 	H _i S as well as SO _i convert colour of H+/ K _i Cr _i O _i from Orange to green.

45.	Methanolic NaBH, converts	O
46.	During thermal decomposition of NH ₄ NO _{2*} N ₂ O gas and H ₂ O vapar are formed	Ammonium salts are ionic in nature and thermally decompose easily
47.	BaC ₂ O ₄ do not dissolve in water but dissolve in dilute acids	C ₂ O ₄ ²⁻ ions are removed as H ₂ C ₂ O ₄ in acidic medium
43.	Correct order of increasing acidity of hydrogen halide is HF < HCl < HBr < H1	Correct order of increasing bond length of hydrogen halide is HF < HCl < HI < HBr
49.	H2S has the minitum boiling point out of H2O,	Secondary interactions among H ₂ S molecules are
50.	Silver mirror is formed when $C_aH_s-C = C-H$ react with ammoniacal AgNO,	Silver mirror is formed as a result of reduction of Ag+ ion.

22 A/L අ용 [papers grp]

WWW.PastPapers.WIKI

Sripali Vidyalava che Vidyalava chemistry lava chemistry Scipal chemistry Scipali Vid	G.C.E. Advanced Level Examination 2023 Sripalee College - Horana	aya chemistry Sripali mistry Sripali Vidya riy Sripali Vidyalaya pali Vidyalaya chem
stri Stateli Vidvalaya ch Stipali Vidyalaya chemiy Vidyaliwa chemistry ling	First Term test - 2023 April	Sripali Vidyalaya chemistry Iyalaya chemistry Sripal chemistry Sripali Vidya Legistra Sripali Videalay
Chemistry	II dry Sripali Vidyalaya hermatry Sripali Vidyalaya chematry Sripali Vidyal	Three hours

Answer all questions.

Part B - Essay

05.(a) Using below given data draw a Born - Haber cycle to calculate standard Lattice formation enthalpy

$$\Delta H_{L_1}^{\bullet}(Ca_{(p)}) = 178 \text{ kJ mol}^{\bullet}$$
 $\Delta H_{L_1}^{\bullet}(Ca_{(p)}) = 59 \text{ kJ mol}^{\bullet}$
 $\Delta H_{L_2}^{\bullet}(Ca_{(p)}) = 1145 \text{ kJ mol}^{\bullet}$
 $\Delta H_{L_2}^{\bullet}(Cl_{(p)}) = 242 \text{ kJ mol}^{\bullet}$
 $\Delta H_{L_2}^{\bullet}(Cl_{(p)}) = -349 \text{ kj mol}^{\bullet}$
 $\Delta H_{L_2}^{\bullet}(Ca_{(p)}) = -795 \text{ kJ mol}^{\bullet}$

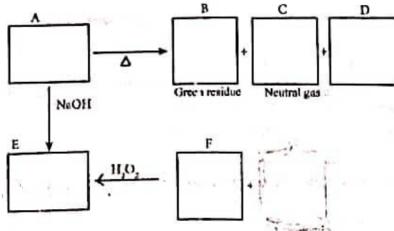
- (b) Write belanced equations to show following enthalpy changes.
 - Standard enthalpy change of hydration of sodium ion.
 - ii. Standard lattice formation enthalpy change of Lithium Fluoride.
 - iii. Standard enthalpy change of combustion of CH,-C-CH,(I)
 - iv. Standard enthalpy change of bond dis ociation of fluorine
 - v. Standard enthalpy change of atomization of chlorine
 - vi. Standard enthalpy change of vaporization of water
 - vii. Standard enthalyy change of Sunlimation of Jodine
 - viii. Standard enthalpy change of formation of (NH₄)₂SO₄(s)
- (c) How would you identify the following two solutions Cl*(aq) solution and CO₁*(aq) solution
- O6.(a) i NH, and O_I(g) react with each other forming NO(g) and H₂O(l) under standard. Conditions write balanced chemical equation for this reaction.

Calculate ΔH_R⁰ for the above reaction

 H^0 , $(NH_1(g)) = 46 \text{ kJ mol}^{-1}$

 H^0 , (NO(g)) = 90 kJ mol⁻¹

 $H_{l}^{0}(H_{l}O(l)) = -242 \text{ kJ mol}^{-1}$


(b) Write balanced chemical reactions by identifying the correct products

i.
$$Li(s) + N_s(g)$$

v.
$$Al_{O_1}(s) + NaOH(aq)$$
 \longrightarrow

ix.
$$(NH_4)_2 Cr_2O_7(s)$$

- (c) i. Write molecular kinetic equation and identify the terms.
- Using ideal gas equation and above equation derive a relationship to calculate n can square speed of a gas.
 - iii. Using the equation derived in (ii) above calculate $\vec{C^2}_{CO_2}$; $\vec{C^2}_{H_2}$ $(\vec{C^2}_{CO_2})$
 - 07. Reactions of compounds of a 3d elemnt are given below.

- i. Identify species from A -F
- ii. Write balanced reaction for heating A
- iii. Write balanced reaction for F reacting with H,O,
- iv. Write-balanced reaction for A converting to E by adding NaOH

- (b) Write Formula of oxides of the third period elements with their highest oxidation states. Classify them considering acidic, basic or amphoteric nature.
- (c) Rusted ion nail was treated with excess dilute H₂SO₄ acid and the final volume was brought upto 250 em³ by adding water 25 cm³ from this solution was taken and reacted with 0.02 moldm³ KMnO₄ solution used volum of KMnO₂ was 20 cm³

Another 25cm³ portion from the above solution was taken and SO₂ gas was bubbled initially and excess SO₂ was removed by heating the solution. This solution was ageing titrated with the above KMnO₂ solution and its volume was 60 cm³.

- Write balanced ionic reaction for the reaction between KMnO, and Fe²⁺.
- ii. Calculate mass of Iron which did not undergo nisting.
- iii. Calculate mass of Iron which undergo rusting.
- iv. Culculate total mass of from part.
- 08. (a) Carry out the following conversion using the below given reagents by not exceeding 5 steps.

List of reagents

HCN, dilute H2SO4, NaOH, H2O, HCN, H2SO,

- i. Identify the reactants needed to synthesize the above compound.
 - ii. What is the colour of the above compound
- iii. The product obtained in above part (i) is used to identify an important group of compound inorganic chemistry. What is that important type of compound.
- iv. What is the name of the reagent used to identify the above important group of compound.
- .(c) Complete the below conversions by not exceeding 4 steps.

iil. Acidity of phenol is higher than that of alcohols Explain this